POJ - 1118 - Lining Up (暴力枚举)

本文探讨了如何解决平面上最多点共线的问题,并提供了一种有效的算法实现思路。通过遍历所有点并利用整数乘除判断共线性,避免了浮点数运算带来的精度误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lining Up
Time Limit: 2000MS Memory Limit: 32768K
Total Submissions: 25940 Accepted: 8125

Description

"How am I ever going to solve this problem?" said the pilot. 

Indeed, the pilot was not facing an easy task. She had to drop packages at specific points scattered in a dangerous area. Furthermore, the pilot could only fly over the area once in a straight line, and she had to fly over as many points as possible. All points were given by means of integer coordinates in a two-dimensional space. The pilot wanted to know the largest number of points from the given set that all lie on one line. Can you write a program that calculates this number? 


Your program has to be efficient! 

Input

Input consist several case,First line of the each case is an integer N ( 1 < N < 700 ),then follow N pairs of integers. Each pair of integers is separated by one blank and ended by a new-line character. The input ended by N=0.

Output

output one integer for each input case ,representing the largest number of points that all lie on one line. 

Sample Input

5
1 1
2 2
3 3
9 10
10 11
0

Sample Output

3

Source



题意:一个平面上有n个点,问最多有几个点在同一条直线上



因为n并没有很大,所以考虑的就是把所有点都跑一遍,计算斜率可能会导致精度误差而且还需要另外考虑斜率不存在的问题,所以就用

 y1 / x1 = y2 / x2  =>  y1 * x2 = y2 * x1 来判断三点是否在同一直线



#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;

const int maxn = 700+10;

int n,ans,vis[maxn];

struct node{int x,y;}p[maxn];

int main()
{
    while(scanf("%d",&n)&&n){
        for(int i=0;i<n;i++) scanf("%d%d",&p[i].x,&p[i].y);
        
        ans = 0;
        
        for(int i=0;i<n-1;i++){
            
            memset(vis,0,sizeof vis);
            
            for(int j=i+1;j<n;j++){
                
                if(vis[j]) continue;
                
                int dx = p[i].x - p[j].x,dy = p[i].y - p[j].y,cnt = 2;
                
                for(int k=j+1;k<n;k++){
                    
                    int dxx = p[i].x - p[k].x,dyy = p[i].y - p[k].y;
                    
                    if(dxx*dy==dx*dyy){
                        vis[k] = 1;
                        cnt++;
                    }
                }
                if(cnt>ans) ans = cnt;
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值