iterator

本文探讨了Java中使用不同类型的循环结构遍历集合时的性能差异,特别是在使用传统for循环与增强for循环(for-each)时的效率区别,并通过字节码对比展示了底层实现的一致性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

If you are just wandering over the collection to read all of the values, then there is no difference between using an iterator or the new for loop syntax, as the new syntax just uses the iterator underwater.

If however, you mean by loop the old “c-style” loop:

for(int i=0; i< list.size(); i++) {
Object o = list.get(i);
}
Then the new for loop, or iterator, can be a lot more efficient, depending on the underlying data structure. The reason for this is that for some data structures, get(i) is an O(n) operation, which makes the loop an O(n2) operation. A traditional linked list is an example of such a data structure. All iterators have as a fundamental requirement that next() should be an O(1) operation, making the loop O(n).

To verify that the iterator is used underwater by the new for loop syntax, compare the generated bytecodes from the following two Java snippets. First the for loop:

List a = new ArrayList();
for (Integer integer : a)
{
integer.toString();
}
// Byte code
ALOAD 1
INVOKEINTERFACE java/util/List.iterator()Ljava/util/Iterator;
ASTORE 3
GOTO L2
L3
ALOAD 3
INVOKEINTERFACE java/util/Iterator.next()Ljava/lang/Object;
CHECKCAST java/lang/Integer
ASTORE 2
ALOAD 2
INVOKEVIRTUAL java/lang/Integer.toString()Ljava/lang/String;
POP
L2
ALOAD 3
INVOKEINTERFACE java/util/Iterator.hasNext()Z
IFNE L3
And second, the iterator:

List a = new ArrayList();
for (Iterator iterator = a.iterator(); iterator.hasNext();)
{
Integer integer = (Integer) iterator.next();
integer.toString();
}
// Bytecode:
ALOAD 1
INVOKEINTERFACE java/util/List.iterator()Ljava/util/Iterator;
ASTORE 2
GOTO L7
L8
ALOAD 2
INVOKEINTERFACE java/util/Iterator.next()Ljava/lang/Object;
CHECKCAST java/lang/Integer
ASTORE 3
ALOAD 3
INVOKEVIRTUAL java/lang/Integer.toString()Ljava/lang/String;
POP
L7
ALOAD 2
INVOKEINTERFACE java/util/Iterator.hasNext()Z
IFNE L8
As you can see, the generated byte code is effectively identical, so there is no performance penalty to using either form. Therefore, you should choose the form of loop that is most aesthetically appealing to you, for most people that will be the for-each loop, as that has less boilerplate code.

for-each is syntactic sugar for using iterators (approach 2).

You might need to use iterators if you need to modify collection in your loop. First approach will throw exception.

for (String i : list) {
System.out.println(i);
list.remove(i); // throws exception modCount 和 expectedModCount不一致
}

Iterator it=list.iterator();
while (it.hasNext()){
System.out.println(it.next());
it.remove(); // valid here
}

//打印并删除
for (int i = 0; i < a.size(); i++) {
System.out.println(a.get(i));
a.remove(i);
} //不会报错,但影响结果,可以从后往前删

内容概要:本文详细介绍了基于FPGA的144输出通道可切换电压源系统的设计与实现,涵盖系统总体架构、FPGA硬件设计、上位机软件设计以及系统集成方案。系统由上位机控制软件(PC端)、FPGA控制核心和高压输出模块(144通道)三部分组成。FPGA硬件设计部分详细描述了Verilog代码实现,包括PWM生成模块、UART通信模块和温度监控模块。硬件设计说明中提及了FPGA选型、PWM生成方式、通信接口、高压输出模块和保护电路的设计要点。上位机软件采用Python编写,实现了设备连接、命令发送、序列控制等功能,并提供了一个图形用户界面(GUI)用于方便的操作和配置。 适合人群:具备一定硬件设计和编程基础的电子工程师、FPGA开发者及科研人员。 使用场景及目标:①适用于需要精确控制多通道电压输出的实验环境或工业应用场景;②帮助用户理解和掌握FPGA在复杂控制系统中的应用,包括PWM控制、UART通信及多通道信号处理;③为研究人员提供一个可扩展的平台,用于测试和验证不同的电压源控制算法和策略。 阅读建议:由于涉及硬件和软件两方面的内容,建议读者先熟悉FPGA基础知识和Verilog语言,同时具备一定的Python编程经验。在阅读过程中,应结合硬件电路图和代码注释,逐步理解系统的各个组成部分及其相互关系。此外,实际动手搭建和调试该系统将有助于加深对整个设计的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值