In the figure below you can see triangle ABC and its in-circle (Circle that touches all the sides of a triangle internally). The radius of this in circle is r. Three other circles are drawn. Each of them touches two sides of this triangle and the in circle of ABC. The radiuses of these circles are r1, r2 and r3.

Given the values of r, r1, r2 and r3 you will have to find the area of triangle ABC.
input
The input file can contain up to 1000 lines of inputs. Each line contains four positive floating-point numbers which denotes the values of r, r1, r2 and r3 respectively.
Input is terminated by a line containing four negative integers.
output
For each line of input produce one line of output. This line contains serial of output followed by a floating-point number which denotes the area of triangle ABC. This floating-point number may have two digits after the decimal point. You can assume that for the given values of r, r1, r2 and r3 it will always be possible to construct a triangle ABC. If required you can assume that pi = 3.141592653589793 and also use double precision floating-point numbers for floating-point calculations. You can assume that there will be no such input for which small precision errors will cause difference in printed output. Look at the output for sample input for details.
sample input
49.1958415692 5.3025839959 20.7869367050 31.8019699761
186.6830516757 71.9474500429 84.8796672233 37.6219288070
-1 -1 -1 -1
sample output
Case 1: 18237.14
Case 2: 195777.32
这是一道计算几何的问题,今天醒的特别早,大早上水了一题。
具体的细节看代码吧,其实就是一个数学的问题。
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int main()
{
double r,r1,r2,r3;
int count=1;
while(scanf("%lf %lf %lf %lf",&r,&r1,&r2,&r3),r>=0&&r1>=0&&r2>=0&&r3>=0)
{
double x1,x2,x3,a,b,c,l,mian;
x1=r2*(r+r2)/(r-r2);
x2=r3*(r3+r)/(r-r3);
x3=r1*(r1+r)/(r-r1);
x1=sqrt((x1+r2+r)*(x1+r2+r)-r*r);
x2=sqrt((x2+r3+r)*(x2+r3+r)-r*r);
x3=sqrt((x3+r1+r)*(x3+r1+r)-r*r);
a=x1+x2;
b=x2+x3;
c=x1+x3;
l=(a+b+c)/2;
mian=sqrt(l*(l-a)*(l-b)*(l-c));
printf("Case %d: %.2f\n",count++,mian);
}
}
本文介绍了一个计算几何问题的解决方案,具体地,通过给定三角形内切圆及其三个额外圆的半径,来求解三角形的面积。该方案利用数学公式计算与三角形各边相切的圆的半径,进而求得三角形各边长度,最终得到面积。
5868

被折叠的 条评论
为什么被折叠?



