In-circles Again (计算几何)

本文介绍了一个计算几何问题的解决方案,具体地,通过给定三角形内切圆及其三个额外圆的半径,来求解三角形的面积。该方案利用数学公式计算与三角形各边相切的圆的半径,进而求得三角形各边长度,最终得到面积。
部署运行你感兴趣的模型镜像

In the figure below you can see triangle ABC and its in-circle (Circle that touches all the sides of a triangle internally). The radius of this in circle is r. Three other circles are drawn. Each of them touches two sides of this triangle and the in circle of ABC. The radiuses of these circles are r1, r2 and r3.

Given the values of r, r1, r2 and r3 you will have to find the area of triangle ABC.

input

The input file can contain up to 1000 lines of inputs. Each line contains four positive floating-point numbers which denotes the values of r, r1, r2 and r3 respectively.

Input is terminated by a line containing four negative integers.


output

For each line of input produce one line of output. This line contains serial of output followed by a floating-point number which denotes the area of triangle ABC. This floating-point number may have two digits after the decimal point. You can assume that for the given values of r, r1, r2 and r3 it will always be possible to construct a triangle ABC. If required you can assume that pi = 3.141592653589793 and also use double precision floating-point numbers for floating-point calculations. You can assume that there will be no such input for which small precision errors will cause difference in printed output. Look at the output for sample input for details.


sample input

49.1958415692 5.3025839959 20.7869367050 31.8019699761
186.6830516757 71.9474500429 84.8796672233 37.6219288070
-1 -1 -1 -1

sample output

Case 1: 18237.14
Case 2: 195777.32

这是一道计算几何的问题,今天醒的特别早,大早上水了一题。

具体的细节看代码吧,其实就是一个数学的问题。


#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
int main()
{
	double r,r1,r2,r3;
	int count=1;
	while(scanf("%lf %lf %lf %lf",&r,&r1,&r2,&r3),r>=0&&r1>=0&&r2>=0&&r3>=0)
	{
		double x1,x2,x3,a,b,c,l,mian; 
		x1=r2*(r+r2)/(r-r2);
		x2=r3*(r3+r)/(r-r3);
		x3=r1*(r1+r)/(r-r1);
		x1=sqrt((x1+r2+r)*(x1+r2+r)-r*r);
		x2=sqrt((x2+r3+r)*(x2+r3+r)-r*r);
		x3=sqrt((x3+r1+r)*(x3+r1+r)-r*r);
		a=x1+x2;
		b=x2+x3;
		c=x1+x3;
		l=(a+b+c)/2;
		mian=sqrt(l*(l-a)*(l-b)*(l-c));
		printf("Case %d: %.2f\n",count++,mian);
	}
} 


您可能感兴趣的与本文相关的镜像

Kotaemon

Kotaemon

AI应用

Kotaemon 是由Cinnamon 开发的开源项目,是一个RAG UI页面,主要面向DocQA的终端用户和构建自己RAG pipeline

内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值