VC++ 中提供了很多关于时间操作的函数,利用它们控制程序能够精确地完成定时和计时操作。VC++中的WM_TIMER消息映射能进行简单的时间控制。首先调用函数SetTimer()设置定时间隔,如SetTimer(0,200,NULL)即为设置200ms的时间间隔。然后在应用程序中增加定时响应函数OnTimer(),并在该函数中添加响应的处理语句,用来完成到达定时时间的操作。这种定时方法非常简单,但其定时功能如同Sleep()函数的延时功能一样,精度非常低,只可以用来实现诸如位图的动态显示等对定时精度要求不高的情况。
在精度要求较高的情况下,如要求误差不大于1ms时,可以利用GetTickCount()函数。该函数的返回值是DWORD型,表示以ms为单位的计算机启动后经历的时间间隔。下列的代码可以实现50ms的精确定时,其误差小于1ms。
// 起始值和中止值
DWORD dwStart, dwStop ;
dwStop = GetTickCount();
while(TRUE) {
// 上一次的中止值变成新的起始值
dwStart = dwStop ;
// 此处添加相应控制语句
do
{
dwStop = GetTickCount() ;
}while(dwStop - 50 < dwStart) ;
}
对于精确度要求更高的定时操作,则应该使用QueryPerformanceFrequency()和QueryPerformanceCounter()函数。这两个函数是VC++提供的仅供Windows 95及其后续版本使用的精确时间函数,并要求计算机从硬件上支持精确定时器。QueryPerformanceFrequency()函数和QueryPerformanceCounter()函数的原型如下:
BOOL QueryPerformanceFrequency(LARGE_INTEGER *lpFrequency);
BOOL QueryPerformanceCounter(LARGE_INTEGER *lpCount);
数据类型LARGE_INTEGER既可以是一个8字节长的整型数,也可以是两个4字节长的整型数的联合结构,其具体用法根据编译器是否支持64位而定。该类型的定义如下:
typedef union _LARGE_INTEGER
{
struct
{
// 4字节整型数
DWORD LowPart ;
// 4字节整型数
LONG HighPart ;
};
// 8字节整型数
LONGLONG QuadPart ;
} LARGE_INTEGER ;
在进行定时之前,先调用QueryPerformanceFrequency()函数获得机器内部定时器的时钟频率,然后在需要严格定时的事件发生之前和发生之后分别调用QueryPerformanceCounter()函数,利用两次获得的计数之差及时钟频率,计算出事件经历的精确时间。下面的程序用来测试函数Sleep(100)的精确持续时间:
LARGE_INTEGER litmp;
LONGLONG QPart1,QPart2;
double dfMinus, dfFreq, dfTim;
QueryPerformanceFrequency(&litmp);
// 获得计数器的时钟频率
dfFreq = (double)litmp.QuadPart;
QueryPerformanceCounter(&litmp);
// 获得初始值
QPart1 = litmp.QuadPart;
Sleep(100);
QueryPerformanceCounter(&litmp);
// 获得中止值
QPart2 = litmp.QuadPart;
dfMinus = (double)(QPart2 - QPart1);
// 获得对应的时间值
dfTim = dfMinus / dfFreq;
由于Sleep()函数自身的误差,上述程序每次执行的结果都会有微小误差。
使用多媒体定时器
微软公司在其多媒体Windows中提供了精确定时器的底层API支持。利用多媒体定时器可以很精确地读出系统的当前时间,并且能在非常精确的时间间隔内完成一个事件、函数或过程的调用。利用多媒体定时器的基本功能,可以通过两种方法实现精确定时。
1.使用timeGetTime()函数
该函数定时精度为ms级,返回从Windows启动开始所经过的时间。由于使用该函数是通过查询的方式进行定时控制的,所以,应该建立定时循环来进行定时事件的控制。
2. 使用timeSetEvent()函数
利用该函数可以实现周期性的函数调用。函数的参数说明如下:
uDelay:延迟时间;
uResolution:时间精度,在Windows中缺省值为1ms;
lpFunction:回调函数,为用户自定义函数,定时调用;
dwUser:用户参数;
uFlags:标志参数;
TIME_ONESHOT:执行一次;
TIME_PERIODIC:周期性执行。
具体应用时,可以通过调用timeSetEvent()函数,将需要周期性执行的任务定义在lpFunction回调函数中(如:定时采样、控制等),从而完成所需处理的事件。需要注意的是:任务处理的时间不能大于周期间隔时间。另外,在定时器使用完毕后,应及时调用timeKillEvent()将之释放。
下面这段代码的主要功能是设置两个时钟定时器,一个间隔是1ms,一个间隔是2s。每执行一次,把当前系统时钟值输入文件“cure.out”中,以比较该定时器的精确度。
//定义1ms和2s时钟间隔,以ms为单位
# define ONE_MILLI_SECOND 1
# define TWO_SECOND 2000
//定义时钟分辨率,以ms为单位
# define TIMER_ACCURACY 1
//定义时间间隔
UINT wTimerRes_1ms,wTimerRes_2s;
//定义分辨率
UINT wAccuracy;
//定义定时器句柄
UINT TimerID_1ms,TimerID_2s;
//打开输出文件“cure.out”
CCureApp::CCureApp():fout(“cure.out”, ios::out)
{
// 给时间间隔变量赋值
wTimerRes_1ms = ONE_MILLI_SECOND;
wTimerRes_2s = TWO_SECOND;
TIMECAPS tc;
//利用函数timeGetDevCaps取出系统分辨率的取值范围,如果无错则继续
if(timeGetDevCaps(&tc,sizeof(TIMECAPS))==TIMERR_NOERROR)
{
//分辨率的值不能超出系统的取值范围
wAccuracy=min(max(tc.wPeriodMin,
TIMER_ACCURACY),tc.wPeriodMax);
//调用timeBeginPeriod函数设置定时器的分辨率
timeBeginPeriod(wAccuracy);
//设置定时器
InitializeTimer();
}
}
CCureApp:: ~CCureApp()
{
//结束时钟
fout <<“结束时钟”<< endl;
// 删除两个定时器
timeKillEvent(TimerID_1ms);
timeKillEvent(TimerID_2s);
// 删除设置的分辨率
timeEndPeriod(wAccuracy);
}
void CCureApp::InitializeTimer()
{
StartOneMilliSecondTimer();
StartTwoSecondTimer();
}
// 1ms定时器的回调函数,类似于中断处理程序,一定要声明为全局PASCAL函数,否则编译会有问题
void PASCAL OneMilliSecondProc(UINT wTimerID, UINT msg,DWORD dwUser,DWORD dwl,DWORD dw2)
{
// 定义计数器
static int ms = 0;
CCureApp *app = (CCureApp *)dwUser;
// 取得系统时间,以ms为单位
DWORD osBinaryTime = GetTickCount();
//输出计数器值和当前系统时间
app->fout<<++ms<<“:1ms:”
<
MFc 中的时间函数
最新推荐文章于 2024-06-23 23:48:40 发布
4196

被折叠的 条评论
为什么被折叠?



