第十周项目1-二叉树算法库

本文介绍了二叉树的链式存储结构定义及其基本运算实现,包括创建、查找、输出等操作,并通过具体实例展示了算法的运用过程。

问题及代码:

/* 
Copyright (c)2016,烟台大学计算机与控制工程学院 
All rights reserved. 
文件名称:第十周项目1 - 二叉树算法库.cpp 
作    者:董雪 
完成日期:2016年11月3日 
版 本 号:v1.0 
 
问题描述:  定义二叉树的链式存储结构,实现其基本运算,并完成测试。  
输入描述: 若干测试数据。 
程序输出: 二叉树的输出。  
*/  

btree.h头文件代码:

 

#include <stdio.h>  
#include <malloc.h>  
#define MaxSize 100  
typedef char ElemType;  
typedef struct node  
{  
    ElemType data;              //数据元素  
    struct node *lchild;        //指向左孩子  
    struct node *rchild;        //指向右孩子  
} BTNode;  
void CreateBTNode(BTNode *&b,char *str);    //由str串创建二叉链  
BTNode *FindNode(BTNode *b,ElemType x);     //返回data域为x的节点指针  
BTNode *LchildNode(BTNode *p);              //返回*p节点的左孩子节点指针  
BTNode *RchildNode(BTNode *p);              //返回*p节点的右孩子节点指针  
int BTNodeDepth(BTNode *b);                 //求二叉树b的深度  
void DispBTNode(BTNode *b);                 //以括号表示法输出二叉树  
void DestroyBTNode(BTNode *&b);             //销毁二叉树  


btree.cpp代码:

//二叉树基本运算函数  
#include "btree.h"  
  
  
void CreateBTNode(BTNode *&b,char *str)     //由str串创建二叉链  
{  
    BTNode *St[MaxSize],*p=NULL;  
    int top=-1,k,j=0;  
    char ch;  
    b=NULL;             //建立的二叉树初始时为空  
    ch=str[j];  
    while (ch!='\0')    //str未扫描完时循环  
    {  
        switch(ch)  
        {  
        case '(':  
            top++;  
            St[top]=p;  
            k=1;  
            break;      //为左节点  
        case ')':  
            top--;  
            break;  
        case ',':  
            k=2;  
            break;                          //为右节点  
        default:  
            p=(BTNode *)malloc(sizeof(BTNode));  
            p->data=ch;  
            p->lchild=p->rchild=NULL;  
            if (b==NULL)                    //p指向二叉树的根节点  
                b=p;  
            else                            //已建立二叉树根节点  
            {  
                switch(k)  
                {  
                case 1:  
                    St[top]->lchild=p;  
                    break;  
                case 2:  
                    St[top]->rchild=p;  
                    break;  
                }  
            }  
        }  
        j++;  
        ch=str[j];  
    }  
}  
BTNode *FindNode(BTNode *b,ElemType x)  //返回data域为x的节点指针  
{  
    BTNode *p;  
    if (b==NULL)  
        return NULL;  
    else if (b->data==x)  
        return b;  
    else  
    {  
        p=FindNode(b->lchild,x);  
        if (p!=NULL)  
            return p;  
        else  
            return FindNode(b->rchild,x);  
    }  
}  
BTNode *LchildNode(BTNode *p)   //返回*p节点的左孩子节点指针  
{  
    return p->lchild;  
}  
BTNode *RchildNode(BTNode *p)   //返回*p节点的右孩子节点指针  
{  
    return p->rchild;  
}  
int BTNodeDepth(BTNode *b)  //求二叉树b的深度  
{  
    int lchilddep,rchilddep;  
    if (b==NULL)  
        return(0);                          //空树的高度为0  
    else  
    {  
        lchilddep=BTNodeDepth(b->lchild);   //求左子树的高度为lchilddep  
        rchilddep=BTNodeDepth(b->rchild);   //求右子树的高度为rchilddep  
        return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);  
    }  
}  
void DispBTNode(BTNode *b)  //以括号表示法输出二叉树  
{  
    if (b!=NULL)  
    {  
        printf("%c",b->data);  
        if (b->lchild!=NULL || b->rchild!=NULL)  
        {  
            printf("(");  
            DispBTNode(b->lchild);  
            if (b->rchild!=NULL) printf(",");  
            DispBTNode(b->rchild);  
            printf(")");  
        }  
    }  
}  
void DestroyBTNode(BTNode *&b)   //销毁二叉树  
{  
    if (b!=NULL)  
    {  
        DestroyBTNode(b->lchild);  
        DestroyBTNode(b->rchild);  
        free(b);  
    }  
}  


main.cpp:

#include "btree.h"  
int main()  
{  
    BTNode *b,*p,*lp,*rp;;  
    printf("  (1)创建二叉树:");  
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");  
    printf("\n");  
    printf("  (2)输出二叉树:");  
    DispBTNode(b);  
    printf("\n");  
    printf("  (3)查找H节点:");  
    p=FindNode(b,'H');  
    if (p!=NULL)  
    {  
        lp=LchildNode(p);  
        if (lp!=NULL)  
            printf("左孩子为%c ",lp->data);  
        else  
            printf("无左孩子 ");  
        rp=RchildNode(p);  
        if (rp!=NULL)  
            printf("右孩子为%c",rp->data);  
        else  
            printf("无右孩子 ");  
    }  
    else  
        printf(" 未找到!");  
    printf("\n");  
    printf("  (4)二叉树b的深度:%d\n",BTNodeDepth(b));  
    printf("  (5)释放二叉树b\n");  
    DestroyBTNode(b);  
    return 0;  
}  


运行结果截图:

知识点总结:学习了定义二叉树算法库。

学习心得:平时要多加练习,多画。

 

 

内容概要:本文档是一份关于交换路由配置的学习笔记,系统地介绍了网络设备的远程管理、交换机与路由器的核心配置技术。内容涵盖Telnet、SSH、Console三种远程控制方式的配置方法;详细讲解了VLAN划分原理及Access、Trunk、Hybrid端口的工作机制,以及端口镜像、端口汇聚、端口隔离等交换技术;深入解析了STP、MSTP、RSTP生成树协议的作用与配置步骤;在路由部分,涵盖了IP地址配置、DHCP服务部署(接口池与全局池)、NAT转换(静态与动态)、静态路由、RIP与OSPF动态路由协议的配置,并介绍了策略路由和ACL访问控制列表的应用;最后简要说明了华为防火墙的安全区域划分与基本安全策略配置。; 适合人群:具备一定网络基础知识,从事网络工程、运维或相关技术岗位1-3年的技术人员,以及准备参加HCIA/CCNA等认证考试的学习者。; 使用场景及目标:①掌握企业网络中常见的交换与路由配置技能,提升实际操作能力;②理解VLAN、STP、OSPF、NAT、ACL等核心技术原理并能独立完成中小型网络搭建与调试;③通过命令示例熟悉华为设备CLI配置逻辑,为项目实施和故障排查提供参考。; 阅读建议:此笔记以实用配置为主,建议结合模拟器(如eNSP或Packet Tracer)动手实践每一条命令,对照拓扑理解数据流向,重点关注VLAN间通信、路由选择机制、安全策略控制等关键环节,并注意不同设备型号间的命令差异。
多旋翼无人机组合导航系统-多源信息融合算法(Matlab代码实现)内容概要:本文围绕多旋翼无人机组合导航系统,重点介绍了基于多源信息融合算法的设计与实现,利用Matlab进行代码开发。文中采用扩展卡尔曼滤波(EKF)作为核心融合算法,整合GPS、IMU(惯性测量单元)、里程计和电子罗盘等多种传感器数据,提升无人机在复杂环境下的定位精度与稳定性。特别是在GPS信号弱或丢失的情况下,通过IMU惯导数据辅助导航,实现连续可靠的位姿估计。同时,文档展示了完整的算法流程与Matlab仿真实现,涵盖传感器数据预处理、坐标系转换、滤波融合及结果可视化等关键环节,体现了较强的工程实践价值。; 适合人群:具备一定Matlab编程基础和信号处理知识,从事无人机导航、智能控制、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于多旋翼无人机的高精度组合导航系统设计;②用于教学与科研中理解多传感器融合原理与EKF算法实现;③支持复杂环境下无人机自主飞行与定位系统的开发与优化。; 阅读建议:建议结合Matlab代码与理论推导同步学习,重点关注EKF的状态预测与更新过程、多传感器数据的时间同步与坐标变换处理,并可通过修改噪声参数或引入更多传感器类型进行扩展实验。
源码来自:https://pan.quark.cn/s/28c3abaeb160 在高性能计算(High Performance Computing,简称HPC)范畴内,处理器的性能衡量对于改进系统构建及增强运算效能具有关键价值。 本研究聚焦于一种基于ARM架构的处理器展开性能评估,并就其性能与Intel Xeon等主流商业处理器进行对比研究,特别是在浮点运算能力、存储器带宽及延迟等维度。 研究选取了高性能计算中的典型任务,诸如Stencils计算方法等,分析了在ARM处理器上的移植编译过程,并借助特定的执行策略提升运算表现。 此外,文章还探讨了ARM处理器在“绿色计算”范畴的应用前景,以及面向下一代ARM服务器级SoC(System on Chip,简称SoC)的性能未来探索方向。 ARM处理器是一种基于精简指令集计算机(Reduced Instruction Set Computer,简称RISC)架构的微处理器,由英国ARM Holdings公司研发。 ARM处理器在移动设备、嵌入式系统及服务器级计算领域获得广泛应用,其设计优势体现为高能效比、低成本且易于扩展。 当前的ARMv8架构支持64位指令集,在高性能计算领域得到普遍采用。 在性能测试环节,重点考察了处理器的浮点运算能力,因为浮点运算在科学计算、图形渲染和数据处理等高性能计算任务中扮演核心角色。 实验数据揭示,ARM处理器在双精度浮点运算方面的性能达到475 GFLOPS,相当于Intel Xeon E5-2680 v3处理器性能的66%。 尽管如此,其内存访问带宽高达105 GB/s,超越Intel Xeon处理器。 这一发现表明,在数据密集型应用场景下,ARM处理器能够展现出与主流处理器相匹敌的性能水平。 在实践...
霍夫曼编码是一种广泛使用的无损数据压缩算法,其核心思想是通过构建一棵带权路径最短的二叉树(霍夫曼树),为高频出现的字符分配较短的编码,为低频出现的字符分配较长的编码,从而实现高效压缩。在 Python 中,虽然标准库中没有直接实现霍夫曼编码的模块,但可以借助一些第三方库或自行实现相关算法。 ### 1. 使用 `bitarray` 库进行位操作 霍夫曼编码涉及大量的位操作,例如将字符编码为二进制串并进行打包和解包。Python 中的 `bitarray` 库非常适合这一任务,它提供了高效的位数组操作,便于构建和处理二进制数据流。 安装方式: ```bash pip install bitarray ``` 示例代码片段: ```python from bitarray import bitarray # 示例字符编码 code_table = { 'a': bitarray('0'), 'b': bitarray('10'), 'c': bitarray('11') } # 编码过程 text = "abac" encoded = bitarray() for char in text: encoded.extend(code_table[char]) # 写入文件 with open('compressed.bin', 'wb') as f: encoded.tofile(f) ``` ### 2. 自行实现霍夫曼编码类 虽然没有现成的库直接提供霍夫曼编码功能,但可以根据算法原理自行实现。通常包括以下组件: - **节点类**:用于构建霍夫曼树 - **优先队列**:使用 `heapq` 模块实现最小堆 - **编码与解码函数** 示例代码: ```python import heapq from collections import Counter class HuffmanNode: def __init__(self, char, freq): self.char = char self.freq = freq self.left = None self.right = None def __lt__(self, other): return self.freq < other.freq def build_huffman_tree(freq_map): heap = [HuffmanNode(char, freq) for char, freq in freq_map.items()] heapq.heapify(heap) while len(heap) > 1: left = heapq.heappop(heap) right = heapq.heappop(heap) merged = HuffmanNode(None, left.freq + right.freq) merged.left = left merged.right = right heapq.heappush(heap, merged) return heap[0] ``` ### 3. 霍夫曼编码的应用场景 基于纯霍夫曼算法的压缩程序能够对未经压缩的文件格式起到压缩作用,特别是对字节种类不多、重复次数多的文件格式如 BMP 位图、AVI 视频等能够起到非常好的压缩效果,但对于本身已经经过压缩的文件格式如 DOCX、MP4 等基本无效 [^2]。 此外,在实际运行测试过程中发现,对于权值相同的字符,每次迭代排序时编码要么是 0、要么是 1,这往往造成成对的编译码错误,问题主要出在以下代码中: ```python sorts = sorted(l, key=lambda x: x.value, reverse=False) ``` 因此,在实现过程中应特别注意节点排序策略,确保编码的一致性和正确性 [^3]。 ### 4. 面向对象设计与扩展性 在实现霍夫曼编码的过程中,可以采用面向对象设计来提高代码的可扩展性与灵活性。例如,使用策略模式处理不同的编码策略,使用工厂模式创建节点对象,使用递归模式构建霍夫曼树 [^1]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值