题目链接:http://poj.org/problem?id=1696
————————————————————————————
题目思路:
简单凸包,用的叉积擂台赛,注意当有共线点时的处理。一遍ac
————————————————————————————
源代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <math.h>
#include <queue>
#include <algorithm>
using namespace std;
#define INF 10000000000
#define min(a,b) ((a)>(b)?(b):(a))
#define max(a,b) ((a)>(b)?(a):(b))
#define maxn 110
const double eps = 1e-10;
typedef double T;
int n = 0;
struct Pt
{
T x;
T y;
int index;
int flag;
Pt(){}
Pt(T px,T py) { x = px; y = py; }
Pt operator +(const Pt &p) { return Pt(x+p.x,y+p.y); }
Pt operator -(const Pt &p) { return Pt(x-p.x,y-p.y); }
int operator ==(const Pt &p)
{
T temp = 0;
temp = sqrt((x - p.x)*(x - p.x)+(y-p.y)*(y-p.y));
if(temp<eps)
return 1;
else
return 0;
}
};
struct Line
{
Pt a;
Pt b;
int num;
Line(){}
Line (Pt p1,Pt p2) { a = p1; b = p2;}
};
//ab * cd
T dpr(Pt a,Pt b,Pt c,Pt d) { return (b.x-a.x)*(d.x-c.x)+(b.y-a.y)*(d.y-c.y);}
T dpr_three(Pt a,Pt b,Pt c) { return (b.x-a.x)*(c.x-a.x)+(b.y-a.y)*(c.y-a.y);}
//ab × cd
T cpr(Pt a,Pt b,Pt c,Pt d){ return (b.x-a.x)*(d.y-c.y)-(b.y-a.y)*(d.x-c.x);}
T cpr_three(Pt o,Pt b,Pt c) { return (b.x-o.x)*(c.y-o.y)-(b.y-o.y)*(c.x-o.x);}
//a b为向量,向量的点积和叉积
T det(const Pt& a,const Pt& b) { return a.x*b.y - a.y*b.x; }
T dot(const Pt& a,const Pt& b) { return a.x*b.x + a.y*b.y; }
T d(Pt a,Pt b) { return sqrt((a.x - b.x)*(a.x - b.x) + (a.y-b.y)*(a.y - b.y));}
//-------------符号函数--------------------
int sgn(T x) { return x<-eps?-1:x>eps;}
int epsfun(T x)
{
if(x<-eps || x<eps)
return 0;
else
return x;
}
//bool cmp(Line l1,Line l2) { return l1.a.x < l2.a.x; }
bool cmp(Pt p1,Pt p2)
{
if(p1.y == p2.y) return p1.x<p2.x;
return p1.y<p2.y;
}
void judge_line(Line line1 ,Line line2) //判断两直线位置关系并求交点
{
if(sgn(cpr(line1.b,line1.a,line2.b,line2.a) == 0))
{
if(sgn(cpr(line1.b,line1.a,line2.b,line1.a) == 0))
printf("LINE\n");
else
printf("NONE\n");
}
else
{
T s1 = cpr(line1.b,line1.a,line2.a,line1.a),s2 = cpr(line1.b,line1.a,line2.b,line1.a);
printf("POINT ");
printf("%.2f %.2f\n",(line2.a.x*s2-line2.b.x*s1)/(s2-s1),(line2.a.y*s2-line2.b.y*s1)/(s2-s1));
}
}
//-------------直线线段相交--------------------
//直线与线段 规范相交: Line a为直线,Line b为线段
int line_seg_cross(Line a,Line b)
{
if(sgn(cpr(a.b,a.a,b.a,a.a))*sgn(cpr(a.b,a.a,b.b,a.a))<0)
return 1;
else
return 0;
}
int res_line_seg_cross()
{
}
//-------------线段线段相交--------------------
int between(Pt a,Pt b,Pt c)
{
if(dpr_three(a,c,b)<=0)
return 1;
return 0;
}
//非规范相交(包括多个交点)
int segcross(Line linea,Line lineb)
{
T s1 = 0,s2 = 0,s3 = 0,s4 = 0;
int d1 = 0,d2 = 0,d3 = 0,d4 = 0 ;
Pt a = linea.a,b = linea.b,c = lineb.a,d = lineb.b;
d1 = sgn(s1 = cpr_three(a,b,c));
d2 = sgn(s2 = cpr_three(a,b,d));
d3 = sgn(s3 = cpr_three(c,d,a));
d4 = sgn(s4 = cpr_three(c,d,b));
if((d1^d2) == -2 && (d3^d4) == -2) return 1;
if((d1 == 0 && between(c,a,b)) || (d2 == 0 && between(d,a,b)) || (d3 == 0 && between(a,c,d)) || (d4 == 0 && between(b,c,d)))
return 1;
return 0;
}
//判规范相交
bool res_segcross(Line a,Line b)
{
int d1 = sgn(det(a.a-b.a,b.b-b.a)),
d2 = sgn(det(a.b-b.a,b.b-b.a)),
d3 = sgn(det(b.a-a.a,a.b-a.a)),
d4 = sgn(det(b.b-a.a,a.b-a.a));
if (d1*d2 == -1 && d3*d4 == -1)
return true;
return false;
}
//规范相交:1, 非规范相交且交点有无数个:3 非规范相交且交点唯一:2 不相交:0
int segcross_all(Pt a,Pt b,Pt c,Pt d,Pt *p) //规范相交:1, 非规范相交且交点有无数个:3 非规范相交且交点唯一:2 不相交:0
{
T s1 = 0,s2 = 0,s3 = 0,s4 = 0;
int d1 = 0,d2 = 0,d3 = 0,d4 = 0 ;
d1 = sgn(s1 = cpr_three(a,b,c));
d2 = sgn(s2 = cpr_three(a,b,d));
d3 = sgn(s3 = cpr_three(c,d,a));
d4 = sgn(s4 = cpr_three(c,d,b));
if((d1^d2) == -2 && (d3^d4) == -2)
{
(*p).x = (c.x*s2 - d.x*s1)/(s2 - s1);
(*p).y = (c.y*s2 - d.y*s1)/(s2 - s1);
return 1;
}
if(!(d1 || d2 || d3 ||d4) && (between(c,a,b)||between(d,a,b)||between(a,c,d)||between(b,c,d)))
return 3;
if(d1 == 0 && between(c,a,b))
{
(*p).x = c.x;
(*p).y = c.y;
return 2;
}
if(d2 == 0 && between(d,a,b))
{
(*p).x = d.x;
(*p).y = d.y;
return 2;
}
if(d3 == 0 && between(a,c,d))
{
(*p).x = a.x;
(*p).y = a.y;
return 2;
}
if(d4 == 0 && between(b,c,d))
{
(*p).x = b.x;
(*p).y = b.y;
return 2;
}
return 0;
}
Pt point[maxn];
int main()
{
// freopen("in.in", "r", stdin);
// freopen("out.txt","w",stdout);
int m = 0,n = 0;
int i = 0,j = 0;
int x = 0,y = 0,cur = 0;
scanf("%d",&m);
while(m--)
{
scanf("%d",&n);
for(i = 0;i<n;i++)
{
scanf("%d%d%d",&cur,&x,&y);
point[i] = Pt(x,y);
point[i].index = cur;
point[i].flag = 0;
}
sort(point,point+n,cmp);
point[0].flag = 1;
printf("%d %d ",n,point[0].index);
cur = 0;
for(i = 1;i<n;i++)
{
int bst = -1;
for(j = 1;j<n;j++)
{
if(point[j].flag)
continue;
if(bst == -1)
bst = j;
else
{
if(cpr_three(point[cur],point[bst],point[j]) == 0)
{
if(point[bst].x>point[j].x)
bst = j;
}
else if(cpr_three(point[cur],point[bst],point[j])<0)
bst = j;
}
}
if(i == n-1)
printf("%d\n",point[bst].index);
else
printf("%d ",point[bst].index);
cur = bst;
point[bst].flag = 1;
}
}
return 0;
}