Maximum sum on a torus

Maximum sum on a torus
Input: Standard Input

Output: Standard Output

A grid that wraps both horizontally and vertically is called a torus. Given a torus where each cell contains an integer, determine the sub-rectangle with the largest sum. The sum of a sub-rectangle is the sum of all the elements in that rectangle. The grid below shows a torus where the maximum sub-rectangle has been shaded.

1

-1

0

0

-4

2

3

-2

-3

2

4

1

-1

5

0

3

-2

1

-3

2

-3

2

4

1

-4

Input

The first line in the input contains the number of test cases (at most 18). Each case starts with an integer N (1≤N≤75) specifying the size of the torus (always square). Then follows N lines describing the torus, each line containing N integers between-100 and 100, inclusive.

Output

For each test case, output a line containing a single integer: the maximum sum of a sub-rectangle within the torus.

Sample Input                                 

2
5
1 -1 0 0 -4
2 3 -2 -3 2
4 1 -1 5 0
3 -2 1 -3 2
-3 2 4 1 -4
3
1 2 3
4 5 6
7 8 9
Output for Sample Input
15

45

http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=24&page=show_problem&problem=1768
这道题是求最大子矩阵和的加强版,原矩阵是一个上下左右都可以串通的矩阵环,通过在原矩阵的下方,右方和右下方添加相同的矩阵,然后枚举所求最大子矩阵在第一个矩阵中的左上角,再通过动态规划的方法求出长宽不大于N的最大子矩阵,各种枚举情况中的最大和即为所求解。
#include <cstdio>
using namespace std;

#define MAX 155

int main()
{
	int x,y,i,j,n,s,ans;
	int c[MAX],b[MAX],a[MAX][MAX];
	scanf("%d",&s);
	while (--s>=0){
		scanf("%d",&n);
		for(i=0;i<n;++i)
			for (j=0;j<n;++j){
				scanf("%d",&a[i][j]);
				a[i][j+n]=a[i+n][j]=a[i+n][j+n]=a[i][j];
			}
		ans=-200;
		for (x=0;x<n;++x)
			for(y=0;y<n;++y)
				for(i=0;i<n;++i)
					for(j=0;j<n;++j)
					{
						c[j]=a[x+i][y+j];
						if(j)
							c[j]+=c[j-1];
						if(i)
							b[j]+=c[j];
						else
							b[j]=c[j];
						if (b[j]>ans)
							ans=b[j];
					}
		printf("%d\n",ans);
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值