Working with Streams

本文详细介绍了如何使用CFStream框架创建、打开、读取和写入流。涵盖了错误处理、非阻塞流操作及通过runloop进行事件监听等内容。

Working with Streams  

本章讨论了如何创建,打开,并就读取错误检查和写入流。它还介绍了如何读取读取流,如何写入一个写入流,如何防止阻塞时读取或写入一个流,并通过代理服务器如何导航流。

Working with Read Streams

我们从为一个文件创建可读流开始,列表2-1,所示。

Listing 2-1  Creating a read stream from a file

CFReadStreamRef myReadStream = CFReadStreamCreateWithFile(kCFAllocatorDefault, fileURL);
在这个清单中,kCFAllocatorDefault参数指定当前的默认系统分配器用来分配流和fileURL参数存储指定的本读流正在创建的文件,如文件,名称: file:///Users/joeuser/Downloads/MyApp.sit.

isting 2-2  Opening a read stream

if (!CFReadStreamOpen(myReadStream)) {
    CFStreamError myErr = CFReadStreamGetError(myReadStream);
    // An error has occurred.
        if (myErr.domain == kCFStreamErrorDomainPOSIX) {
        // Interpret myErr.error as a UNIX errno.
        } else if (myErr.domain == kCFStreamErrorDomainMacOSStatus) {
        // Interpret myErr.error as a MacOS error code.
            OSStatus macError = (OSStatus)myErr.error;
        // Check other error domains.
    }
}
该CFReadStreamOpen函数返回TRUE和FALSE来指示成功失败如果打开过程中遇到错误。如果CFReadStreamOpen返回FALSE,该示例调用CFReadStreamGetError函数,它返回一个类型的两个值组成CFStreamError结构:( a domain code and an error code) 域代码和错误代码。该域名代码表明该错误代码应该如何解释。例如,如果域代码kCFStreamErrorDomainPOSIX,错误代码是一个UNIX errno的值。其他错误域kCFStreamErrorDomainMacOSStatus,这表明该错误代码是OSStatus价值MacErrors.h界定,kCFStreamErrorDomainHTTP,这表明该错误代码是由CFStreamErrorHTTP定义的枚举值之一。

Working with Write Streams

Listing 2-5  Creating, opening, writing to, and releasing a write stream

CFWriteStreamRef myWriteStream =
        CFWriteStreamCreateWithFile(kCFAllocatorDefault, fileURL);
if (!CFWriteStreamOpen(myWriteStream)) {
    CFStreamError myErr = CFWriteStreamGetError(myWriteStream);
    // An error has occurred.
    if (myErr.domain == kCFStreamErrorDomainPOSIX) {
    // Interpret myErr.error as a UNIX errno.
    } else if (myErr.domain == kCFStreamErrorDomainMacOSStatus) {
        // Interpret myErr.error as a MacOS error code.
        OSStatus macError = (OSStatus)myErr.error;
        // Check other error domains.
    }
}
UInt8 buf[] = "Hello, world";
UInt32 bufLen = strlen(buf);
 
while (!done) {
    CFTypeRef bytesWritten = CFWriteStreamWrite(myWriteStream, buf, strlen(buf));
    if (bytesWritten < 0) {
        CFStreamError error = CFWriteStreamGetError(myWriteStream);
        reportError(error);
    } else if (bytesWritten == 0) {
        if (CFWriteStreamGetStatus(myWriteStream) == kCFStreamStatusAtEnd) {
            done = TRUE;
        }
    } else if (bytesWritten != strlen(buf)) {
        // Determine how much has been written and adjust the buffer
        bufLen = bufLen - bytesWritten;
        memmove(buf, buf + bytesWritten, bufLen);
 
        // Figure out what went wrong with the write stream
        CFStreamError error = CFWriteStreamGetError(myWriteStream);
        reportError(error);
 
    }
}
CFWriteStreamClose(myWriteStream);
CFRelease(myWriteStream);
myWriteStream = NULL;

Preventing Blocking When Working with Streams

Using Polling to Prevent Blocking

为了调查的读或写数据流,你需要看看流准备好了没有。 当要发送可写流的时候,可以通过调用函数CFWriteStreamCanAcceptBytes。 如果它返回TRUE,那么你可以使用CFWriteStreamWrite函数,因为它会立即能写而不会阻塞。 同样,对于一个读数据流,然后再调用CFReadStreamRead,调用函数CFReadStreamHasBytesAvailable。 通过轮询流状态,可避免阻塞的等待流的线程就绪。

Listing 2-6  Polling a read stream

while (!done) {
    if (CFReadStreamHasBytesAvailable(myReadStream)) {
        UInt8 buf[BUFSIZE];
        CFIndex bytesRead = CFReadStreamRead(myReadStream, buf, BUFSIZE);
        if (bytesRead < 0) {
            CFStreamError error = CFReadStreamGetError(myReadStream);
            reportError(error);
        } else if (bytesRead == 0) {
            if (CFReadStreamGetStatus(myReadStream) == kCFStreamStatusAtEnd) {
                done = TRUE;
            }
        } else {
            handleBytes(buf, bytesRead);
        }
    } else {
        // ...do something else while you wait...
    }
}

Listing 2-7 is a polling example for a write stream.

Listing 2-7  Polling a write stream

UInt8 buf[] = "Hello, world";
UInt32 bufLen = strlen(buf);
 
while (!done) {
    if (CFWriteStreamCanAcceptBytes(myWriteStream)) {
        int bytesWritten = CFWriteStreamWrite(myWriteStream, buf, strlen(buf));
        if (bytesWritten < 0) {
            CFStreamError error = CFWriteStreamGetError(myWriteStream);
            reportError(error);
        } else if (bytesWritten == 0) {
            if (CFWriteStreamGetStatus(myWriteStream) == kCFStreamStatusAtEnd)
            {
                done = TRUE;
            }
        } else if (bytesWritten != strlen(buf)) {
            // Determine how much has been written and adjust the buffer
            bufLen = bufLen - bytesWritten;
            memmove(buf, buf + bytesWritten, bufLen);
 
            // Figure out what went wrong with the write stream
            CFStreamError error = CFWriteStreamGetError(myWriteStream);
            reportError(error);
        }
    } else {
        // ...do something else while you wait...
    }
}

Using a Run Loop to Prevent Blocking

The run loop是一种监视特别事件发生的线程。当run loop监视的事件发生时,它将会调用事先定义好的回调函数进行通知。

This example begins by creating a socket read stream:

CFStreamCreatePairWithSocketToCFHost(kCFAllocatorDefault, host, port,
                                   &myReadStream, NULL);
where the CFHost object reference, host, specifies the remote host with which the read stream is to be made and the port parameter specifies the port number that the host uses. The CFStreamCreatePairWithSocketToCFHostfunction returns the new read stream reference in myReadStream. The last parameter, NULL, indicates that the caller does not want to create a write stream. If you wanted to create a write steam, the last parameter would be, for example, &myWriteStream.

efore opening the socket read stream, create a context that will be used when you register to receive stream-related events:

CFStreamClientContext myContext = {0, myPtr, myRetain, myRelease, myCopyDesc};
0是版本号,myptr是要传递给回调函数的参数指针,使用myRetain方法保存myptr,使用完成后使用myRelease方法释放myptr;  Finally,copyDescription is a parameter to a function to provide a description of the stream. For example, if you were to call CFCopyDesc(myReadStream) with the stream client context shown above, CFStream would callmyCopyDesc(myPtr).

The client context also allows you the option of setting the retainrelease, and copyDescription parameters toNULL. If you set the retain and release parameters to NULL, then the system will expect you to keep the memory pointed to by the info pointer alive until the stream itself is destroyed. If you set the copyDescription parameter to NULL, then the system will provide, if requested, a rudimentary description of what is in the memory pointed to by the info pointer.

With the client context set up, call the function CFReadStreamSetClient to register to receive stream-related events. CFReadStreamSetClient requires that you specify the callback function and the events you want to receive. The following example in Listing 2-8 specifies that the callback function wants to receive thekCFStreamEventHasBytesAvailablekCFStreamEventErrorOccurred, and kCFStreamEventEndEncounteredevents. Then schedule the stream on a run loop with the CFReadStreamScheduleWithRunLoop function. SeeListing 2-8 for an example of how to do this.

Listing 2-8  Scheduling a stream on a run loop

CFOptionFlags registeredEvents = kCFStreamEventHasBytesAvailable |
        kCFStreamEventErrorOccurred | kCFStreamEventEndEncountered;
if (CFReadStreamSetClient(myReadStream, registeredEvents, myCallBack, &myContext)
{
    CFReadStreamScheduleWithRunLoop(myReadStream, CFRunLoopGetCurrent(),
                                    kCFRunLoopCommonModes);
}

With the stream scheduled on the run loop, you are ready to open the stream as shown in Listing 2-9.

Listing 2-9  Opening a nonblocking read stream

if (!CFReadStreamOpen(myReadStream)) {
    CFStreamError myErr = CFReadStreamGetError(myReadStream);
    if (myErr.error != 0) {
    // An error has occurred.
        if (myErr.domain == kCFStreamErrorDomainPOSIX) {
        // Interpret myErr.error as a UNIX errno.
            strerror(myErr.error);
        } else if (myErr.domain == kCFStreamErrorDomainMacOSStatus) {
            OSStatus macError = (OSStatus)myErr.error;
            }
        // Check other domains.
    } else
        // start the run loop
        CFRunLoopRun();
}
 

Now, wait for your callback function to be executed. In your callback function, check the event code and take appropriate action. See Listing 2-10.

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值