计算机视觉: 三维物体生成

本文介绍了一种新的三维物体生成模型ControllableMeshGenerationThroughSparseLatentPointDiffusionModels,通过稀疏latent点和扩散过程实现细粒度可控生成,包括位置和特征的扩散,以及Autoencoder的使用。模型允许用户交互式调整形状,甚至进行物体融合,未来方向将拓展到更灵活和精细的结构控制。

三维物体生成与编辑

论文地址: Controllable Mesh Generation Through Sparse Latent Point Diffusion Models



背景

数据是目前数字化和AI领域最宝贵的财富之一,但是对于目前的开发者来说,收集数据都意味着极大的成本。所以建立一个高效的生成模型能极大的提高开发者的效率降低生产成本。

生成模型简单来说就是一个概率模型,其学习真实世界的数据分布从而去生成新的数据样本。其中目前主流的图像的生成模型包括stable difussion模型, 其原理主要可以分成两个过程

  1. 扩散过程: 将原本清晰的数据(可以是声音/图片/点云等)逐步添加高斯噪声,直至其最终成为一个完全的高斯噪声
  2. 逆扩散: 也就是步骤一的反向过程,也就是将步骤一得到的高斯噪声逐步重新回溯成清晰的数据

![外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传](https://img-home.csdnimg.cn/images/20230724024159.png?origin_url=image%2F%E4%B8%89%E7%BB%B4%E7%89%A9%E4%BD%93%E7%94%9F%E6%88%90%E4%B8%8E%E7%BC%96%E8%BE%91%2F1695453734003.png&pos_id=img-1q7KRqmt-1695459349198

而根据stable diffusion的思想的三维物体生成模型主要也分成了两个流派:

  • 建立一个2D的扩散生模型,然后融合成3D模型。eg: Dreamfusion, Mag
评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曼城周杰伦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值