dividedata2.R-20170905

本文通过构建线性模型、支持向量机(SVM)和径向基核函数(RBF)的核支持向量机(KSVM),对数据进行训练并预测,比较了三种模型在相同数据集上的预测误差。实验中,每种模型被重复训练和测试1000次,以评估其平均预测精度。
library(caret) 
library("kernlab")
data=as.matrix(oadata)
colnames(data)=c('y','x1','x2','x17',paste("x",3:16,sep=""))

c=1000 #验证c次
set.seed(1000)
r1=matrix(0,c,1)
r2=matrix(0,c,1)
r4=matrix(0,c,1)
p1=matrix(0,14,c)

for (k in 1:c) {
  index <-createDataPartition(data[,1], time=1, p=0.8, list=F)
  train=data[index, ]
  test=data[-index, ]
  colnames(train)=c('y','x1','x2','x17',paste("x",3:16,sep=""))
  colnames(test)=c('y','x1','x2','x17',paste("x",3:16,sep=""))
  
  a.lm = lm(y~0+x1+x2+x17
            +as.factor(x3)
            +as.factor(x4)
            #+as.factor(x5)
            +as.factor(x6)
            +as.factor(x7)
            +as.factor(x8)
            +as.factor(x9)
            #+as.factor(x10)
            +as.factor(x11)
            +as.factor(x12)
            #+as.factor(x13)
            +as.factor(x14)
            #+as.factor(x15)
            +as.factor(x16)
            ,data=data.frame(train)) #train集构造anova模型,删去x5,x15,x10,x15
  #assign(paste("a.lm",k,sep=""),a.lm) #记为ak
  #summary(a.lm)
  #assign(paste("beta",k,sep=""),data.matrix(coef(a.lm))) #系数betak
  ytest=predict(aov(a.lm),data.frame(test[,2:18])) 
  #assign(paste("ytest",k,sep=""),ytest) #test集预测结果ytestk
  resi1=abs(ytest-test[,1])/test[,1]
  r1[k]=mean(resi1) #误差r1(k)
  #print(mean(resi1))
  p1[,k]=Anova(a.lm,singular.ok = TRUE,type="III")$Pr #p-value

m<-svm(train[,2:18],train[,1])
#assign(paste("m",k,sep=""),m)
#summary(m)
ytest2=predict(m,test[,2:18])
#assign(paste("ytest2_",k,sep=""),ytest2)
resi2=abs(ytest2-test[,1])/test[,1]
r2[k]=mean(resi2) #误差
#print(mean(resi2))

#svm,kernel=RBF
s=ksvm(train[,2:18],train[,1],kernel = "rbfdot")
s.ytest=predict(s,test[,2:18],type = "response")
r4[k]=mean(abs(s.ytest-test[,1])/test[,1])
}

mean(r1)
mean(r2)
mean(r4)

#最终模型
af.lm = lm(y~0+x1+x2+x17
          +as.factor(x3)
          +as.factor(x4)
          #+as.factor(x5)
          +as.factor(x6)
          +as.factor(x7)
          +as.factor(x8)
          +as.factor(x9)
          #+as.factor(x10)
          +as.factor(x11)
          +as.factor(x12)
          #+as.factor(x13)
          +as.factor(x14)
          #+as.factor(x15)
          +as.factor(x16)
          ,data=data.frame(data)) 
summary(af.lm)
Anova(af.lm,singular.ok = TRUE,type="III")
#ytest=predict(aov(af.lm),data.frame(test[,2:18])) 
#p1[,k]=Anova(af.lm,singular.ok = TRUE,type="III")$Pr #p-value

mf<-svm(data[,2:18],data[,1])
mf

#svm,kernel=RBF
sf=ksvm(data[,2:18],data[,1],kernel = "rbfdot")
sf

 

基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值