ARTS (1)

来不及解释啦 赶紧上车~


**Algorithm**


Binary search


目标 Target    ————  要找的值
索引 Index     ————   要查找的当前位置
左右指示符 left,right—————— 用来维持查找空间的指标
中间指示符 Mid———————— 用来确定向左还是向右查找的索引

```
int binarySearch(vector<int>&nums,int target)
{
if(nums.size()==0)
return -1;
int left=0,right=nums.size()=1;
//Prevent (left+right) overflow
int mid=left+(right-left)/2;
if(nums[mid]==target){return mid;}
else if(nums[mid]<target){left =mid+1;}
else{right=mid-1;}
}
//End Condition:left>right
return -1;
}
```
This template can find elements or conditions that can be determined by accessing a single index in an array.

1.The search criteria can be determined without comparing the two sides of the element

2.There is no need for postprocessing, because each step, you are checking to see if the element is found. If you reach the end, you know that the element is not found.

 

Initial conditions:

left =0,right=length-1;

end:

left>right;

find left:

right=mid-1;

find right

left=mid+1;

```
int binarySearch2(vector<int>&nums,int target)
{
if(nums.size()==0)
return -1;
int left=0,right=nums.size();
while(left<right)
{
//Prevent (left+right) overflow
int mid=left+(right-left)/2;
if(nums[mid]==target) {return mid;}
else if(nums[mid]<target){left=mid+1;}
else{right=mid;}
}
//Post-processing;
//End Condition :left=right
if(left!=nums.size()&&nums[left]==target]  return left;)
return -1;
}
```
It's more advanced templates.For find condition and element that require access to the current index and its direct **right** neighbor index in the array.

Key Properties

1.It's find condition is taht require access to the element's direct right neighbor.

2.Use the right neighbor of the element to determine if the condition is met and decide whether to go left or right.

3. Make sure the lookup space has at least two elements in each step.

 

Initial conditions:

left=0,right=lenth

end:

left=right

find left:

right=mid

find right

left=mid+1

It Used to search for elements or conditions that require access to the current index and its directly left and right neighbor indexes in the array.

int binarySearch(vector<int>&nums,int target)
{
    if(nums.size()==0)
    return -1;
    
    int left=0,right=nums.size()-1;
    while(left+1<right){
    //Prevent (left+right) overflow
    int mid=left+(right-left)/2;
    if(nums[mid]==target)
    {
       return mid;
    }else if(nums[mid]<target){
        left=mid;    
    }else{
        right=mid;
    }


//End condition:left+1==right
if(nums[left]==target) return left;
if(nums[right]==target) return right;
return -1;
}

Key Properties

1. The search conditions require access to the element's direct left and right neighbors

2.Use the neighbor of the element to determine whether it is to the right or to the left.

3.Ensure that the lookup space has at least 3 elements in each step

4.Post-processing is required. When two elements are left, the loop / recursion ends. Need to assess whether the remaining elements are eligible.

Initial conditions:

left=0,right=length-1;

end:

left+1=right

find left:

mid=right

find right

mid=left

**Key Properties**
**Review**
**Tip**
**Share**

内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值