简介
在之前的文章中,我们提到了可以在跟大模型交互的时候,给大模型提供一些具体的例子内容,方便大模型从这些内容中获取想要的答案。这种方便的机制在langchain中叫做FewShotPromptTemplate。
如果例子内容少的话,其实无所谓,我们可以把所有的例子都发送给大语言模型进行处理。
但是如果例子太多的话,每次都发送如此多的内容,会让我们的钱包承受不住。毕竟那些第三方的大语言模型是按token收费的。
怎么办呢? 能不能找到一个经济又有效的方法来完成我们的工作呢?
答案就是使用example selector。
使用和自定义example selector
我们回想一下在使用FewShotPromptTemplate的时候,实际上是可以同时传入example_selector和examples。
prompt = FewShotPromptTemplate(
example_selector=example_selector,
example_prompt=example_prompt,
suffix="Question: {input}",
input_variables=["input"]
)
这里我们使用了一个example_selector,那么什么是example_selector呢?
从名字上看他的主要作用就是从给定的examples中选择需要的examples出来,提供给大模型使用,从而减少会话的token数目。
langchain中提供了这样的example_selector的实现,我们先来看下它的基础类的定义是怎么样的:
class BaseExampleSelector(ABC):
"""Interface for selecting examples to include in prompts."""
@abstractmethod
def add_example(self, example: Dict[str, str]) -> Any:
"""Add new example to store for a key."""
@abstractmethod
def select_examples(self, input_variables: Dict[str, str]) -> List[dict]:
"""Select which examples to use based on the inputs."""