类似于od run trace 功能的脚本

dbh        //hide od
BPHWCALL  //clear hardware breakpoint
BC        //clear software breakpoint
BPMC      //clear Memory breakpoint

bp  40AF0D//vm_retn=>retn 2c

log "VM Trace start!"
run_to_bp:
EOB  bp_record    //在下次中断发生时,跳转到指定标签处。
ESTO             //step to bp(vmenginejmp) /相当于在OllyDbg按 SHIFT-F9。

bp_record:
log [esp]    //记录
jmp run_to_bp
ret 
内容概要:本文详细介绍了文生视频大模型及AI人应用方案的设计与实现。文章首先阐述了文生视频大模型的技术基础,包括深度生成模型、自然语言处理(NLP)和计算机视觉(CV)的深度融合,以及相关技术的发展趋势。接着,文章深入分析了需求,包括用户需求、市场现状和技术需求,明确了高效性、个性化和成本控制等关键点。系统架构设计部分涵盖了数据层、模型层、服务层和应用层的分层架构,确保系统的可扩展性和高效性。在关键技术实现方面,文章详细描述了文本解析与理解、视频生成技术、AI人交互技术和实时处理与反馈机制。此外,还探讨了数据管理与安全、系统测试与验证、部署与维护等重要环节。最后,文章展示了文生视频大模型在教育、娱乐和商业领域的应用场景,并对其未来的技术改进方向和市场前景进行了展望。 适用人群:具备一定技术背景的研发人员、产品经理、数据科学家以及对AI视频生成技术感兴趣的从业者。 使用场景及目标:①帮助研发人员理解文生视频大模型的技术实现和应用场景;②指导产品经理在实际项目中应用文生视频大模型;③为数据科学家提供技术优化和模型改进的思路;④让从业者了解AI视频生成技术的市场潜力和发展趋势。 阅读建议:本文内容详尽,涉及多个技术细节和应用场景,建议读者结合自身的专业背景和技术需求,重点阅读与自己工作相关的章节,并结合实际项目进行实践和验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值