采用了枚举加扫描的方法,注意极角排序的方式。
知识点 : 极角,叉积
Code:
// ShangHai 2004 (UValive 3529)
// 知识点:极角排序,叉积
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
#define FOR(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define DOR(i,a,b) for(int (i)=(a);(i)>=(b);(i)--)
#define oo 1e6
#define eps 1e-9
#define nMax 5000
//{
#define pb push_back
#define dbg(x) cerr << __LINE__ << ": " << #x << " = " << x << endl
#define F first
#define S second
#define bug puts("OOOOh.....");
#define zero(x) (((x)>0?(x):-(x))<eps)
#define LL long long
#define DB double
#define sf scanf
#define pf printf
#define rep(i,n) for(int (i)=0;(i)<(n);(i)++)
double const pi = acos(-1.0);
double inline sqr(double x) { return x*x; }
int dcmp(double x){
if(fabs(x)<eps) return 0;
return x>0?1:-1;
}
//}
// Describe of the 2_K Geomtry
// First Part : Point and Line
// Second Part Cicle
// Third Part Polygan
// First Part:
// ****************************** Point and Line *******************************\\
//{
class point {
public:
double x,y;
point (double x=0,double y=0):x(x),y(y) {}
void make(double _x,double _y) {x=_x;y=_y;}
void read() { scanf("%lf%lf",&x,&y); }
void out() { printf("%.2lf %.2lf\n",x,y);}
double len() { return sqrt(x*x+y*y); }
point friend operator - (point const& u,point const& v) {
return point(u.x-v.x,u.y-v.y);
}
point friend operator + (point const& u,point const& v) {
return point(u.x+v.x,u.y+v.y);
}
double friend operator * (point const& u,point const& v) {
return u.x*v.y-u.y*v.x;
}
double friend operator ^ (point const& u,point const& v) {
return u.x*v.x+u.y*v.y;
}
point friend operator * (point const& u,double const& k) {
return point(u.x*k,u.y*k);
}
point friend operator / (point const& u,double const& k) { return point(u.x/k,u.y/k); }
friend bool operator < (point const& u,point const& v){
if(dcmp(v.x-u.x)==0) return dcmp(u.y-v.y)<0;
return dcmp(u.x-v.x)<0;
}
friend bool operator != (point const& u,point const& v){
return dcmp(u.x-v.x) || dcmp(u.y-v.y);
}
point rotate(double s) {
return point(x*cos(s) + y*sin(s),\
-x*sin(s) + y*cos(s));
}
};
typedef class line{
public:
point a,b;
line() {}
line (point a,point b):a(a),b(b){}
void make(point u,point v) {a=u;b=v;}
void read() { a.read(),b.read(); }
}segment;
double det(point u,point v) {
return u.x*v.y - u.y*v.x;
}
double dot(point u,point v) {
return u.x*v.x + u.y*v.y;
}
// Weather P is On the Segment (uv)
int dot_on_seg(point p,point u,point v){
return dcmp(det(p-u,v-p))==0 && dcmp(dot(p-u,v-p)) >= 0; // '>=' means P is u or v
}
// The distance from point p to line l
double PToLine(point p,line l) {
return fabs((p-l.a)*(l.a-l.b))/(l.a-l.b).len();
}
// The ProJect Of Point(p) To Line(l)
point PointProjectLine(point p,line l) {
double t = dot(l.b-l.a,p-l.a)/dot(l.b-l.a,l.b-l.a);
return l.a + (l.b-l.a)*t;
}
//}
// ****************************** First Part end ********************************\\
// Second Part:
// ********************************* Circle *************************************\\
// {
struct circle {
point O;
double r;
circle() {};
circle(point O,double r):O(O),r(r){};
};
//}
// ****************************** Second Part End *******************************\\
// Third Part :
// ********************************* Polygan *************************************\\
// {
int ConvexHull(vector<point>& p){
int n=p.size();
int m=0;
vector<point> q;
q.resize(2*n+5);
rep(i,n) {
while(m>1 && dcmp((q[m-1]-q[m-2])*(p[i]-q[m-2])) <= 0) m--;
q[m++] = p[i];
}
int k = m;
for(int i=n-2;i>=0;i--) {
while(m>k && dcmp((q[m-1]-q[m-2])*(p[i]-q[m-2])) <= 0) m--;
q[m++] = p[i];
}
q.resize(m) ;
if(m>1) q.resize(m-1);
// p = q; // 是否修改原来的多边形
return q.size();
}
// 三角形重心
point Center(point a,point b,point c){
return (a+b+c)/3.0;
}
// Centroid of Polygan
point Centroid(vector<point> p){
point O(0,0),ret(0,0);
int n = p.size();
p.pb(p[0]);
double area = 0.0;
rep(i,n) {
ret = ret + Center(O,p[i],p[i+1])*dot(p[i]-O,p[i+1]-O);
area += dot(p[i]-O,p[i+1]-O);
}
if(dcmp(area)==0) {
pf("There maybe something wrong\n");
return p[0];
}
return ret / area;
}
struct Polygan{
vector<point> g;
Polygan() {};
Polygan(vector<point> g):g(g){};
Polygan(point p[],int n) {g.clear();rep(i,n) g.pb(p[i]); };
int convex() { return ConvexHull(g); }
point center() { return Centroid(g); } // 多边形的重心
};
//}
// ******************************* Third Part End ********************************\\
// Sovle Part
int n;
point p[nMax],a[nMax];
int in[nMax];
int od[nMax],f[nMax];
void adjust(point &u) {
if(dcmp(u.x)==0) {
if(u.y > 0) u.y = -u.y;
}
}
inline int small(point u,point v) { //极角排序
if(dcmp(u.x)==0) return dcmp(v.x)!=0;
if(dcmp(v.x)==0) return 0;
return dcmp(u.y/u.x-v.y/v.x)<0;
}
inline int equal(point u,point v) { //极角排序
if(dcmp(u.x)==0 || dcmp(v.x)==0) return dcmp(u.x)==0 && dcmp(v.x)==0;
return dcmp(u.y/u.x-v.y/v.x)==0;
}
int cmp(int i,int j) {
return small(a[i],a[j]);
}
struct Event{
int fr,en;
int Count;
point v;
void make(point p,int a,int b,int c){
fr = a;
en = b;
Count = c;
v = p;
if(v.x < 0) { v.x=-v.x,v.y=-v.y; }
if(dcmp(v.x) == 0) { v.x = 0;if(v.y>0) v.y=-v.y; }
}
};
Event event[nMax];
int N;
int on[nMax];
void updata() {
int i,j;
int tmp = 0;
N = 0;
for(i=0;i<n-1;) {
for(j=i+1;j<n-1;j++)
if(!equal(a[od[j]],a[od[i]])) break;
event[N].make(a[od[i]],i,j,j-i);
N ++;
i = j;
}
}
int left(point p,point v) {
return dcmp(p*v) < 0;
}
int deal(int cur){
point s=p[cur];
rep(i,n) od[i]=i;
int k = 0;
rep(i,n) if(i!=cur) {
a[k] = p[i]-s;
on[k++]=in[i];
}
sort(od,od+k,cmp);
int w[2]={0};
int b[2]={0};
updata();
//event[0].v.out();
for(int i=event[0].en;i<k;i++) {
if(left(event[0].v,a[od[i]])){
if(on[od[i]]) b[0]++;
else w[0]++;
}else {
if(on[od[i]]) b[1]++;
else w[1]++;
}
}
//pf("%d %d %d %d\n",b[0],b[1],w[0],w[1]);
int ans = max(event[0].Count + b[0] + w[1] ,\
event[0].Count + b[1] + w[0]);
for(int i=1;i<N;i++) {
for(int j=event[i-1].fr;j<event[i-1].en;j++) {
if(left(event[i].v,a[od[j]])) {
if(on[od[j]]) b[0]++;
else w[0]++;
}else {
if(on[od[j]]) b[1]++;
else w[1]++;
}
}
for(int j=event[i].fr;j<event[i].en;j++) {
if(left(event[0].v,a[od[j]])) {
if(on[od[j]]) b[0]--;
else w[0]--;
}else {
if(on[od[j]]) b[1]--;
else w[1]--;
}
}
//pf("%d %d %d %d %d\n",b[0],b[1],w[0],w[1],event[i].Count);
ans = max(ans,event[i].Count + b[0] + w[1]);
ans = max(ans,event[i].Count + b[1] + w[0]);
}
return ans+1;
}
void work() {
int ans = 0;
rep(i,n) {
ans = max(ans,deal(i));
//dbg(ans);puts("");
}
pf("%d\n",ans);
}
int main() {
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
while(~sf("%d",&n),n){
rep(i,n) {
p[i].read(),sf("%d",&in[i]);
}
work();
}
return 0;
}