POJ 3384 Feng Shui

本文介绍了一种解决半平面压入并求交的问题,通过选择距离最远的两个点来优化计算过程。包括算法实现、关键步骤解析及实际应用案例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

POJ 3384 Feng Shui


将半平面压进r长度,然后求交。

选上面距离最远的两个点。


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<deque>
#include<queue>

using namespace std;
#define FOR(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define DOR(i,a,b) for(int (i)=(a);(i)>=(b);(i)--)

#define oo 1e6
#define eps 1e-8
#define nMax 100000
#define pb push_back
#define pf push_front

#define F first
#define S second

#define bug puts("OOOOh.....");
#define zero(x) (((x)>0?(x):-(x))<eps)

#define LL long long
#define DB double

int dcmp(double x){
    if(fabs(x)<eps) return 0;
    return x>0?1:-1;
}
class point {
public:
    double x,y;
    point (double x=0,double y=0):x(x),y(y) {}
    void make(double _x,double _y) {x=_x;y=_y;}
    void read() { scanf("%lf%lf",&x,&y); }
    void out() { printf("%.2lf %.2lf\n",x,y);}
    double len() { return sqrt(x*x+y*y); }
    point friend operator - (point const& u,point const& v) {
        return point(u.x-v.x,u.y-v.y);
    }
    point friend operator + (point const& u,point const& v) {
        return point(u.x+v.x,u.y+v.y);
    }
    double friend operator * (point const& u,point const& v) {
        return u.x*v.y-u.y*v.x;
    }
    double friend operator ^ (point const& u,point const& v) {
        return u.x*v.x+u.y*v.y;
    }
    point friend operator * (point const& u,double const& k) {
        return point(u.x*k,u.y*k);
    }
	friend bool operator < (point const& u,point const& v){
		if(dcmp(v.x-u.x)==0) return dcmp(u.y-v.y)<0;
		return dcmp(u.x-v.x)<0;
	}
	friend bool operator != (point const& u,point const& v){
		return dcmp(u.x-v.x) || dcmp(u.y-v.y);
	}
};
double const pi = acos(-1.0);
typedef point vec;

typedef class HalfPlane{
public:
	point P,a;
	vec V;
	double arg,len;
	HalfPlane(){};
	HalfPlane(point a,point b):a(a){
		V = b-a;
		arg = atan2(V.y,V.x);
		len = V.len();
	}
	void forward(double l){
		P = point(-V.y,V.x)*(l/len) + a;
	}
} HP;

double const inf = 1e6;
deque<HP> que;
deque<point> ans;
vector<HP> init() {                                  // Init
	while(!que.empty()) que.pop_back();
	while(!ans.empty()) ans.pop_back();
	vector<HP> ret;ret.clear();
	ret.pb(HP(point(-inf,-inf),point(inf,-inf)));
	ret.pb(HP(point(inf,-inf),point(inf,inf)));
	ret.pb(HP(point(inf,inf),point(-inf,inf)));
	ret.pb(HP(point(-inf,inf),point(-inf,-inf)));
	return ret;
} 
int  satisfy(HP u, point a){
	return dcmp(u.V*(a-u.P)) >= 0;
}
int cmp(HP a,HP b){
	int ret = dcmp(a.arg-b.arg);
	if(ret == 0) return satisfy(b,a.P);
	return ret < 0;
}
int parrell(HP a,HP b){
	return dcmp(a.V*b.V) == 0;
}
int same_dir(HP a,HP b){
	return dcmp(a.V ^ b.V) >= 0;
}
int Same(HP a,HP b){
	return (dcmp((a.P-b.P)*a.V)==0);
}
point Intersection(HP a,HP b){
	point u = a.P-b.P;
	double t = (b.V*u)/(a.V*b.V);
	return a.P + a.V*t;
}
int erase_back(HP v){
	while(ans.size() && !satisfy(v,ans.back())) {
		if(parrell(v,que.back())) return 0;
		ans.pop_back();
		que.pop_back();
	}
	return 1;
}
int erase_front(HP v){
	while(ans.size() && !satisfy(v,ans.front())) {
		if(parrell(v,que.front())) return 0;
		ans.pop_front();
		que.pop_front();
	}
	return 1;
}
int add(HP v){
	if(parrell(v,que.back())) return 0;                        // Can't Be such kind
	ans.push_back(Intersection(v,que.back()));
	que.pb(v);
	return 1;
}  
/*void build(vector<HP>& hp){
	vector<HP> Add =init();
	for(int i=0;i<4;i++) hp.pb(Add[i]);
}*/
double r;
int HP_insection(vector<HP> hp,vector<point>& ret){
	ret.clear();
	vector<HP> Add =init();
	for(int i=0;i<4;i++) hp.pb(Add[i]);
	for(int i=0;i<hp.size();i++) hp[i].forward(r);
	sort(hp.begin(),hp.end(),cmp);
	que.pb(hp[0]);
	for(int i=1;i<hp.size();i++) {
		if(dcmp(hp[i].arg - hp[i-1].arg)==0) continue;
		if(!erase_back(hp[i])) return 0;
		if(!erase_front(hp[i])) return 0;;
		if(!add(hp[i]))  return 0;
	}
	while(ans.size() && !satisfy(que.front(),ans.back())){
		ans.pop_back();
		que.pop_back();		
	}
	while(ans.size() && !satisfy(que.back(),ans.front())) {
		ans.pop_front();
		que.pop_front();
	}
	if(!add(que.front())) return 0;
	if(ans.size() > 2)
	ret = vector<point> (ans.begin(),ans.end());
	return (int) ans.size() > 2;
	// return vector<point> (ans.begin(),ans.end());   // if you need; you would better use unique
}

vector<HP> v;
vector<point> u;
point p[nMax];
int n;
void sovle(){
	int ret = HP_insection(v,u);
	//for(int i=0;i<u.size();i++) u[i].out();
	point ret1,ret2;
	double len=-1;
	for(int i=0;i<u.size();i++){
		for(int j=i+1;j<u.size();j++){
			if(dcmp((u[i]-u[j]).len()-len) > 0){
				ret1 = u[i];
				ret2 = u[j];
				len = (ret1-ret2).len();
			}
		}
	}
	printf("%.5lf %.5lf %.5f %.5f\n",ret1.x,ret1.y,ret2.x,ret2.y);
}

int main(){
#ifndef ONLINE_JUDGE
	freopen("input.txt","r",stdin);
//	freopen("D1.sol","w",stdout);
#endif
	while(~scanf("%d%lf",&n,&r)){
		FOR(i,0,n-1) p[i].read();
		v.clear();
		p[n]=p[0];
		for(int i=0;i<n;i++) v.pb(HP(p[i+1],p[i]));
		sovle();
	}
	return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值