由于项目需要将日志进行加密,并且合同附件写明是使用DES,不得已而做了下来,经过测试,性能仅为原来没有加密前的九至十分之一,而现成的东西不确定是否为线程安全的,即便是使用DLL库,进行线程分离加载也算大废周章。难耐之下,取来一C++的DES加密单元进行了代码转换,直接将其中公共变量(存在线程安全问题)声明改为threadval,调入程序当中,发现性能还不错,是原来加密库的四至五倍,接近不加密时的45%~50%,多少也算了过得去。下面列出源代码和用例(时间关系,注释都是原来C++单元当中搬过来的):
unit UnitDES;
...{$ifndef LITTLE_ENDIAN}
...{$define LITTLE_ENDIAN 1}
...{$endif}
interface
const
(* 32-bit permutation function P used on the output of the S-boxes *)
p32i: array[0..31] of Byte = (
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25
);
(* The (in)famous S-boxes *)
si: array[0..7,0..63] of Byte =
(
(* S1 *)
(14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13),
(* S2 *)
(15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9),
(* S3 *)
(10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12),
(* S4 *)
(7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14),
(* S5 *)
(2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3),
(* S6 *)
(12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13),
(* S7 *)
(4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12),
(* S8 *)
(13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11)
);
(* bit 0 is left-most in byte *)
bytebit: array [0..7] of Integer =
(
0200, 0100, 040, 020, 010, 04, 02, 01
);
nibblebit : array [0..3] of Integer =
(
010, 04, 02, 01
);
(* initial permutation IP *)
ip :array[0..63] of Byte =
(
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7
);
(* final permutation IP^-1 *)
fp: array[0..63] of Byte =
(
40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25
);
(* permuted choice table (key) *)
pc1: array[0..55]of Byte =
(
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4
);
(* number left rotations of pc1 *)
totrot: array [0..15] of Byte =
(
1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28
);

(* permuted choice key (table) *)
pc2:array[0..47] of Byte =
(
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
);
//var
threadvar
(* Lookup tables initialized once only at startup by desinit() *)
sp: array [0..7,0..63] of LongWord; (* Combined S and P boxes *)
iperm: array [0..15,0..15,0..7] of Byte;(* Initial and final permutations *)
fperm: array[0..15,0..15,0..7] of Byte;
(* 8 6-bit subkeys for each of 16 rounds, initialized by dessetkey() *)
kn: array [0..15,0..7] of Byte;
desmode: Integer;
function desinit(mode: Integer):Integer;
function dessetkey(const key:PByte): Integer;
procedure endes(block:PByte);
procedure dedes(block:PByte);
function spinit: Integer;(*static*)
procedure DES_round(num:Integer; block:PLongWord);(*static*)
implementation
...{$ifdef LITTLE_ENDIAN}
(* Byte swap a long *)
//function byteswap(x:LongWord):LongWord;
//var
// cp,CP1:PChar;
// tmp:Char;(*register*)
//begin
// cp := PChar( @x);
// Inc(cp,3);
// tmp := cp^;
// cp1 := cp;
// Dec(cp,3);
// cp1^ := cp^;
// cp^ := tmp;
//
// Dec(cp1);
// Inc(cp);
// tmp := cp1^;
// cp1^ := cp^;
// cp^ := tmp;
//
// Result := x;
//end;
//{$else}
function byteswap(x:LongWord):LongWord;assembler;
asm
bswap eax
end;
...{$endif} (* LITTLE_ENDIAN *)
(* Initialize the lookup table for the combined S and P boxes *)
function spinit: Integer;
var
pbox: array [0..31] of Byte;
p, i, s, j, rowcol: Integer;
val: longInt;
begin
(*
* Compute pbox, the inverse of p32i. This is easier to work with
*)
for p := 0 to 32-1 do
begin
for i := 0 to 32-1 do
begin
if (p32i[i] - 1 = p) then
begin
pbox[p] := i;
break;
end;
end;
end;
for s := 0 to 8 - 1 do
begin (* For each S-box *)
for i := 0 to 64 - 1 do
begin (* For each possible input *)
val := 0;
(*
* The row number is formed from the first and last bits; the
* column number is from the middle 4
*)
//rowcol := (i and 32) or ((i and 1) ? 16 : 0) or ((i shr 1) and $f);
if (i and 1) <> 0 then
rowcol := (i and 32) or ( 16 ) or ((i shr 1) and $f)
else
rowcol := (i and 32) or ( 0) or ((i shr 1) and $f);
for j := 0 to 4-1 do
begin (* For each output bit *)
if (si[s][rowcol] and (8 shr j)) <> 0 then
begin
val := val or (1 shl (31 - pbox[4 * s + j]));
end;
end;
sp[s][i] := val;
end;
end;
Result := 0;
end;
(* The nonlinear function f(r,k), the heart of DES *)
// unsigned long r; /* 32 bits */
// unsigned char subkey[8]; /* 48-bit key for this round */
function f( r:LongWord; subkey:PByte):LongWord;(*static*)
var
rval, rt:LongWord;(*register *)
begin
(*
* Run E(R) ^ K through the combined S & P boxes This code takes
* advantage of a convenient regularity in E, namely that each group of 6
* bits in E(R) feeding a single S-box is a contiguous segment of R.
*)
//rt := (r shr 1) or ((r and 1) ? $80000000 : 0);
if (r and 1) <> 0 then
rt := (r shr 1) or $80000000
else
rt := (r shr 1) or 0;
rval := 0;
rval :=rval or ( sp[0][((rt shr 26) xor subkey^) and $3f]);
Inc(subkey);
rval :=rval or ( sp[1][((rt shr 22) xor subkey^) and $3f]);
Inc(subkey);
rval :=rval or ( sp[2][((rt shr 18) xor subkey^) and $3f]);
Inc(subkey);
rval :=rval or ( sp[3][((rt shr 14) xor subkey^) and $3f]);
Inc(subkey);
rval :=rval or ( sp[4][((rt shr 10) xor subkey^) and $3f]);
Inc(subkey);
rval :=rval or ( sp[5][((rt shr 6) xor subkey^) and $3f]);
Inc(subkey);
rval :=rval or ( sp[6][((rt shr 2) xor subkey^) and $3f]);
Inc(subkey);
//rt := (r shl 1) or ((r and $80000000) ? 1 : 0);
if (r and $80000000)<>0 then
rt := (r shl 1) or ( 1 )
else
rt := (r shl 1) or (0);
rval :=rval or sp[7][(rt xor subkey^) and $3f];
result := rval;
end;
(* Do one DES cipher round *)
// int num; /* i.e. the num-th one */
// unsigned long *block;
procedure DES_round(num:Integer; block:PLongWord);(*static*)
var
block1:PLongWord;
begin
// long f();
(*
* The rounds are numbered from 0 to 15. On even rounds the right half is
* fed to f() and the result exclusive-ORs the left half; on odd rounds
* the reverse is done.
*)
block1 := block;
Inc(block1);
if (num and 1)<> 0 then
begin
block1^ :=block1^ xor f(block^, @kn[num]);
end
else
begin
block^ :=block^ xor f(block1^, @kn[num]);
end;
end;
(* Allocate space and initialize DES lookup arrays
* mode == 0: standard Data Encryption Algorithm
* mode == 1: DEA without initial and final permutations for speed
* mode == 2: DEA without permutations and with 128-byte key (completely
* independent subkeys for each round)
*)
function desinit(mode: Integer):Integer;
procedure iperminit;
var
l, j, k: Integer;(*register*)
i, m: Integer;
begin
(* Clear the permutation array *)
for i := 0 to 16 - 1 do
begin
for j := 0 to 16-1 do
begin
for k := 0 to 8-1 do
begin
iperm[i][j][k] := 0;
end;
end;
end;
for i := 0 to 16-1 do (* each input nibble position *)
begin
for j := 0 to 16-1 do(* each possible input nibble *)
begin
for k := 0 to 64-1 do
begin (* each output bit position *)
l := ip[k] - 1; (* where does this bit come from *)
if ((l shr 2) <> i) then (* does it come from input posn? *)
continue; (* if not, bit k is 0 *)
if (0 = (j and nibblebit[l and 3])) then
continue; (* any such bit in input? *)
m := k and 07; (* which bit is this in the byte *)
iperm[i][j][k shr 3] := iperm[i][j][k shr 3] or bytebit[m];
end;
end;
end;
end;
procedure fperminit;
var
l, j, k: Integer;(*register*)
i, m: Integer;
begin
(* Clear the permutation array *)
for i := 0 to 16 - 1 do
begin
for j := 0 to 16-1 do
begin
for k := 0 to 8-1 do
begin
fperm[i][j][k] := 0;
end;
end;
end;
for i := 0 to 16-1 do (* each input nibble position *)
begin
for j := 0 to 16-1 do(* each possible input nibble *)
begin
for k := 0 to 64-1 do
begin (* each output bit position *)
l := fp[k] - 1; (* where does this bit come from *)
if ((l shr 2) <> i) then (* does it come from input posn? *)
continue; (* if not, bit k is 0 *)
if (0 = (j and nibblebit[l and 3])) then
continue; (* any such bit in input? *)
m := k and 07; (* which bit is this in the byte *)
fperm[i][j][k shr 3] := fperm[i][j][k shr 3] or bytebit[m];
end;
end;
end;
end;
begin
Result := 0;
desmode := mode;
spinit();
if (mode = 1) or (mode = 2) then(* No permutations *)
Exit;
iperminit;
fperminit;
end;

(* Set key (initialize key schedule array) *)
// char *key; /* 64 bits (will use only 56) */
function dessetkey(const key:PByte): Integer;
var
pc1m:array [0..55] of Byte; (* place to modify pc1 into *)
pcr: array [0..55] of Byte; (* place to rotate pc1 into *)
i, j, l:Integer;(*register*)
M:integer;
Key1:PByte;
begin
(*
* In mode 2, the 128 bytes of subkey are set directly from the user's
* key, allowing him to use completely independent subkeys for each
* round. Note that the user MUST specify a full 128 bytes.
*
* I would like to think that this technique gives the NSA a real headache,
* but I'm not THAT naive.
*)
Result := -1;
if (desmode = 2) then
begin
Key1 := Key;
for i := 0 to 16-1 do
begin
for j := 0 to 8-1 do
begin
kn[i][j] := key1^;
Inc(Key1);
end;
end;
Exit;
end;
(* Clear key schedule *)
for i := 0 to 16-1 do
begin
for j := 0 to 8-1 do
begin
kn[i][j] := 0;
end;
end;
for j := 0 to 56-1 do
begin (* convert pc1 to bits of key *)
l := pc1[j] - 1; (* integer bit location *)
m := l and 07; (* find bit *)
//pc1m[j] := (key[l shr 3] and (* find which key byte l is in *)
// bytebit[m]) (* and which bit of that byte *)
// ? 1 : 0; (* and store 1-bit result *)
if (PByte(Integer(key)+(l shr 3))^ and bytebit[m]) <> 0 then
pc1m[j] := 1
else
pc1m[j] := 0;
end;
for i := 0 to 16-1 do
begin (* key chunk for each iteration *)
for j := 0 to 56-1 do(* rotate pc1 the right amount *)
begin
//pcr[j] := pc1m[(l = j + totrot[i]) < (j < 28 ? 28 : 56) ? l : l - 28];
l := j + totrot[I];
if J < 28 then
begin
if l < 28 then
begin
pcr[j] := pc1m[l];
end
else
begin
pcr[j] := pc1m[l-28];
end;
end
else
begin
if l < 56 then
begin
pcr[j] := pc1m[l];
end
else
begin
pcr[j] := pc1m[l-28];
end;
end;
end;
(* rotate left and right halves independently *)
for j := 0 to 48-1 do
begin (* select bits individually *)
(* check bit that goes to kn[j] *)
if (pcr[pc2[j] - 1] <> 0) then
begin
(* mask it in if it's there *)
l := j mod 6;
kn[i][j div 6] :=kn[i][j div 6] or (bytebit[l] shr 2);
end;
end;
end;
Result := 0;
end;
(* In-place encryption of 64-bit block *)
procedure endes(block:PByte);
var
i:Integer;(*register*)
work:array [0..1] of LongWord; (* Working data storage *)
tmp:LongInt;
function Ipermute:Integer;(*static*)
var
i, j:Integer;(*register*)
ib,ob:PByte;(*register*) (* ptr to input or output block *)
p, q:PByte;(*register*)
begin
Result := 0;
if (iperm[0][0][0] = 0) then
begin
(* No permutation, just copy *)
ib := block;
ob := PByte(@work[0]);
for i := 8 downto 1 do
begin
ob^:= ib^;
Inc(ib);
Inc(ob);
end;
Exit;
end;
(* Clear output block *)
ob := PByte(@work[0]);
for i := 8 downto 1 do
begin
ob^ := 0;
Inc(ob);
end;
ib := block;
J := 0;
while j < 16 do
begin (* for each input nibble *)
ob := PByte(@work[0]);
p := @iperm[j][(ib^ shr 4) and 017];
q := @iperm[j + 1][ib^ and 017];
for i := 8 downto 1 do
begin (* and each output byte *)
ob^ :=ob^ or (p^ or q^); (* OR the masks together *)
inc(q);
inc(p);
Inc(ob);
end;
Inc(ib);
Inc(J,2);
end;
end;
function fpermute:Integer;(*static*)
var
i, j:Integer;(*register*)
ib,ob:PByte;(*register*) (* ptr to input or output block *)
p, q:PByte;(*register*)
begin
Result := 0;
if (fperm[0][0][0] = 0) then
begin
(* No permutation, just copy *)
ib := PByte(@work[0]);
ob := block;
for i := 8 downto 1 do
begin
ob^:= ib^;
Inc(ib);
Inc(ob);
end;
Exit;
end;
(* Clear output block *)
ob := block;
for i := 8 downto 1 do
begin
ob^ := 0;
Inc(ob);
end;
ib := PByte(@work[0]);
j := 0;
while j < 16 do
begin (* for each input nibble *)
ob := block;
p := @fperm[j][(ib^ shr 4) and 017];
q := @fperm[j + 1][ib^ and 017];
for i := 8 downto 1 do
begin (* and each output byte *)
ob^ :=ob^ or (p^ or q^); (* OR the masks together *)
inc(q);
inc(p);
Inc(ob);
end;
Inc(ib);
Inc(J,2);
end;
end;
begin
Ipermute; (* Initial Permutation *)

...{$ifdef LITTLE_ENDIAN}
work[0] := byteswap(work[0]);
work[1] := byteswap(work[1]);
...{$endif} (* LITTLE_ENDIAN *)
(* Do the 16 rounds *)
for i := 0 to 16-1 do
DES_round(i, @work[0]);
(* Left/right half swap *)
tmp := work[0];
work[0] := work[1];
work[1] := tmp;

...{$ifdef LITTLE_ENDIAN}
work[0] := byteswap(work[0]);
work[1] := byteswap(work[1]);
...{$endif} (* LITTLE_ENDIAN *)
fpermute; (* Inverse initial * permutation *)
end;
(* In-place decryption of 64-bit block *)
procedure dedes(block:PByte);
var
I: Integer;(*register*)
work: array [0..1] of LongWord; (* Working data storage *)
tmp:LongInt;
function Ipermute:Integer;(*static*)
var
i, j:Integer;(*register*)
ib,ob:PByte;(*register*) (* ptr to input or output block *)
p, q:PByte;(*register*)
begin
Result := 0;
if (iperm[0][0][0] = 0) then
begin
(* No permutation, just copy *)
ib := block;
ob := PByte(@work[0]);
for i := 8 downto 1 do
begin
ob^:= ib^;
Inc(ib);
Inc(ob);
end;
Exit;
end;
(* Clear output block *)
ob := PByte(@work[0]);
for i := 8 downto 1 do
begin
ob^ := 0;
Inc(ob);
end;
ib := block;
J := 0;
while j < 16 do
begin (* for each input nibble *)
ob := PByte(@work[0]);
p := @iperm[j][(ib^ shr 4) and 017];
q := @iperm[j + 1][ib^ and 017];
for i := 8 downto 1 do
begin (* and each output byte *)
ob^ :=ob^ or (p^ or q^); (* OR the masks together *)
inc(q);
inc(p);
Inc(ob);
end;
Inc(ib);
Inc(J,2);
end;
end;
function Fpermute:Integer;(*static*)
var
i, j:Integer;(*register*)
ib,ob:PByte;(*register*) (* ptr to input or output block *)
p, q:PByte;(*register*)
begin
Result := 0;
if (fperm[0][0][0] = 0) then
begin
(* No permutation, just copy *)
ib := PByte(@work[0]);
ob := block;
for i := 8 downto 1 do
begin
ob^:= ib^;
Inc(ib);
Inc(ob);
end;
Exit;
end;
(* Clear output block *)
ob := block;
for i := 8 downto 1 do
begin
ob^ := 0;
Inc(ob);
end;
ib := PByte(@work[0]);
J := 0;
while j < 16 do
begin (* for each input nibble *)
ob := block;
p := @fperm[j][(ib^ shr 4) and 017];
q := @fperm[j + 1][ib^ and 017];
for i := 8 downto 1 do
begin (* and each output byte *)
ob^ :=ob^ or (p^ or q^); (* OR the masks together *)
inc(q);
inc(p);
Inc(ob);
end;
Inc(ib);
Inc(J,2);
end;
end;
begin
Ipermute; (* Initial permutation *)

...{$ifdef LITTLE_ENDIAN}
work[0] := byteswap(work[0]);
work[1] := byteswap(work[1]);
...{$endif} (* LITTLE_ENDIAN *)
(* Left/right half swap *)
tmp := work[0];
work[0] := work[1];
work[1] := tmp;
(* Do the 16 rounds in reverse order *)
for i := 15 downto 0 do
DES_round(i, @work[0]);

...{$ifdef LITTLE_ENDIAN}
work[0] := byteswap(work[0]);
work[1] := byteswap(work[1]);
...{$endif} (* LITTLE_ENDIAN *)
Fpermute; (* Inverse initial * permutation *)
end;
end.
uses
UnitDES;
procedure TForm1.btnTestClick(Sender: TObject);
var
sIn,sOutHex,sKey:String;
NewLen,I: Integer;
block :PByte;
P,P1:PChar;
B,B1:Byte;
begin
sIn := '测试字符串';
sKey := '这是密钥';
desinit(0);
I := Length(sKey);
SetLength(sKey,8); //调整密钥为8位
if I < 8 then
//填充密钥
FillChar(PChar(Integer(PChar(sKey))+I)^,8-I,100);
I := Length(sIn);
if (I mod 8 )<>0 then
begin
//调整串长为8的倍数
NewLen := ((I div 8) + 1) * 8;
SetLength(sIn,NewLen);
//置串结束符(这里是串加密
PChar(Integer(PChar(sIn))+I)^ := #0;
end;
//初始化密钥
dessetkey(PByte(PChar(sKey)));
block := Pointer(sIn);
NewLen := Length(sIn);
while( NewLen > 0 ) do
begin
//加密
endes( PByte(block));
Dec(NewLen,8);
Inc(block,8);
end;
//十六进制转换
SetString(sOutHex,Nil,Length(sIn) * 2);
P := PChar(sIn);
P1 := PChar(sOutHex);
for I := 0 to Length(sIn) - 1 do
begin
B := Byte(P^);
B1 := ((B shr 4) and $f);
case B1 of
0..9:
P1^ := Chr(B1 + 48)
else
P1^ := Chr(B1 + 65 - 10);
end;
Inc(P1);
B1 := (B and $f);
case B1 of
0..9:
P1^ := Chr(B1 + 48)
else
P1^ := Chr(B1 + 65 - 10);
end;
Inc(P1);
Inc(P);
end;
ShowMessage(sOutHex);
//初始化密钥
dessetkey(PByte(PChar(sKey)));
NewLen := Length(sIn);
block := Pointer(sIn);
while( NewLen > 0 ) do
begin
//解密
dedes(PByte(block));
Dec(NewLen, 8);
Inc(block, 8);
end;
SetLength(sIn,strlen(PChar(sIn)));
ShowMessage(sIn);
end;
通过改进DES加密算法并解决线程安全问题,实现加密性能提升至接近未加密状态的45%-50%,介绍具体实现过程及代码示例。
543

被折叠的 条评论
为什么被折叠?



