Parade Series - Win11 & YOLO v5 ( CPU )

在这里插入图片描述
在这里插入图片描述
BOOT

<F12>  /  <Fn>+<F12> 

在这里插入图片描述
Conda

https://repo.anaconda.com/archive/
https://repo.anaconda.com/archive/Anaconda3-2023.07-1-Windows-x86_64.exe

D:\anaconda3\Scripts
D:\anaconda3\Library\bin

在这里插入图片描述
yolov5

pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

conda install git
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
D:\anaconda3\envs>conda create -n backbone5 python=3.8.20
D:\anaconda3\envs>conda init
no change     D:\anaconda3\Scripts\conda.exe
no change     D:\anaconda3\Scripts\conda-env.exe
no change     D:\anaconda3\Scripts\conda-script.py
no change     D:\anaconda3\Scripts\conda-env-script.py
no change     D:\anaconda3\condabin\conda.bat
no change     D:\anaconda3\Library\bin\conda.bat
no change     D:\anaconda3\condabin\_conda_activate.bat
no change     D:\anaconda3\condabin\rename_tmp.bat
no change     D:\anaconda3\condabin\conda_auto_activate.bat
no change     D:\anaconda3\condabin\conda_hook.bat
no change     D:\anaconda3\Scripts\activate.bat
no change     D:\anaconda3\condabin\activate.bat
no change     D:\anaconda3\condabin\deactivate.bat
no change     D:\anaconda3\Scripts\activate
no change     D:\anaconda3\Scripts\deactivate
no change     D:\anaconda3\etc\profile.d\conda.sh
no change     D:\anaconda3\etc\fish\conf.d\conda.fish
no change     D:\anaconda3\shell\condabin\Conda.psm1
no change     D:\anaconda3\shell\condabin\conda-hook.ps1
no change     D:\anaconda3\Lib\site-packages\xontrib\conda.xsh
no change     D:\anaconda3\etc\profile.d\conda.csh
modified      C:\Users\Administrator\Documents\WindowsPowerShell\profile.ps1
no change     HKEY_CURRENT_USER\Software\Microsoft\Command Processor\AutoRun

==> For changes to take effect, close and re-open your current shell. <==

D:\anaconda3\envs>conda activate backbone5

(backbone5) D:\anaconda3\envs\backbone5>pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
Writing to C:\Users\Administrator\AppData\Roaming\pip\pip.ini

在这里插入图片描述

(backbone5) D:\anaconda3\envs>cd  backbone5

(backbone5) D:\anaconda3\envs\backbone5>conda -V
conda 23.5.2

(backbone5) D:\anaconda3\envs\backbone5>
(backbone5) D:\anaconda3\envs\backbone5>python -V
Python 3.8.20

(backbone5) D:\anaconda3\envs\backbone5>git -v
git version 2.45.2.windows.1
(backbone5) D:\anaconda3\envs\backbone5>git clone https://github.com/ultralytics/yolov5
Cloning into 'yolov5'...
remote: Enumerating objects: 17022, done.
remote: Counting objects: 100% (217/217), done.
remote: Compressing objects: 100% (146/146), done.
remote: Total 17022 (delta 122), reused 131 (delta 71), pack-reused 16805 (from 1)
Receiving objects: 100% (17022/17022), 15.74 MiB | 3.18 MiB/s, done.
Resolving deltas: 100% (11660/11660), done.
D:\anaconda3\envs\backbone5\yolov5
├─.github
│  ├─ISSUE_TEMPLATE
│  └─workflows
├─classify
├─data
│  ├─hyps
│  ├─images
│  └─scripts
├─models
│  ├─hub
│  └─segment
├─segment
└─utils
    ├─aws
    ├─docker
    ├─flask_rest_api
    ├─google_app_engine
    ├─loggers
    │  ├─clearml
    │  ├─comet
    │  └─wandb
    └─segment
(backbone5) D:\anaconda3\envs\backbone5>pip install torch torchvision torchaudio
Requirement already satisfied: torch in d:\anaconda3\envs\backbone5\lib\site-packages (2.5.0)
Requirement already satisfied: torchvision in d:\anaconda3\envs\backbone5\lib\site-packages (0.20.0)
Collecting torchaudio
  Downloading torchaudio-2.5.0-cp311-cp311-win_amd64.whl.metadata (6.5 kB)
Requirement already satisfied: filelock in d:\anaconda3\envs\backbone5\lib\site-packages (from torch) (3.16.1)
Requirement already satisfied: typing-extensions>=4.8.0 in d:\anaconda3\envs\backbone5\lib\site-packages (from torch) (4.12.2)
Requirement already satisfied: networkx in d:\anaconda3\envs\backbone5\lib\site-packages (from torch) (3.4.2)
Requirement already satisfied: jinja2 in d:\anaconda3\envs\backbone5\lib\site-packages (from torch) (3.1.4)
Requirement already satisfied: fsspec in d:\anaconda3\envs\backbone5\lib\site-packages (from torch) (2024.10.0)
Requirement already satisfied: sympy==1.13.1 in d:\anaconda3\envs\backbone5\lib\site-packages (from torch) (1.13.1)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in d:\anaconda3\envs\backbone5\lib\site-packages (from sympy==1.13.1->torch) (1.3.0)
Requirement already satisfied: numpy in d:\anaconda3\envs\backbone5\lib\site-packages (from torchvision) (2.1.2)
Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in d:\anaconda3\envs\backbone5\lib\site-packages (from torchvision) (11.0.0)
Requirement already satisfied: MarkupSafe>=2.0 in d:\anaconda3\envs\backbone5\lib\site-packages (from jinja2->torch) (3.0.2)
Downloading torchaudio-2.5.0-cp311-cp311-win_amd64.whl (2.4 MB)
   ---------------------------------------- 2.4/2.4 MB 3.5 MB/s eta 0:00:00
Installing collected packages: torchaudio
Successfully installed torchaudio-2.5.0
(backbone5) D:\anaconda3\envs\backbone5\yolov5>pip install -r requirements.txt
Collecting gitpython>=3.1.30 (from -r requirements.txt (line 5))
  Downloading GitPython-3.1.43-py3-none-any.whl.metadata (13 kB)
Collecting matplotlib>=3.3 (from -r requirements.txt (line 6))
  Downloading matplotlib-3.9.2-cp311-cp311-win_amd64.whl.metadata (11 kB)
Collecting numpy>=1.23.5 (from -r requirements.txt (line 7))
  Downloading numpy-2.1.2-cp311-cp311-win_amd64.whl.metadata (59 kB)
Collecting opencv-python>=4.1.1 (from -r requirements.txt (line 8))
  Downloading opencv_python-4.10.0.84-cp37-abi3-win_amd64.whl.metadata (20 kB)
Collecting pillow>=10.3.0 (from -r requirements.txt (line 9))
  Downloading pillow-11.0.0-cp311-cp311-win_amd64.whl.metadata (9.3 kB)
Collecting psutil (from -r requirements.txt (line 10))
  Downloading psutil-6.1.0-cp37-abi3-win_amd64.whl.metadata (23 kB)
Collecting PyYAML>=5.3.1 (from -r requirements.txt (line 11))
  Downloading PyYAML-6.0.2-cp311-cp311-win_amd64.whl.metadata (2.1 kB)
Collecting requests>=2.32.2 (from -r requirements.txt (line 12))
  Downloading requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)
Collecting scipy>=1.4.1 (from -r requirements.txt (line 13))
  Downloading scipy-1.14.1-cp311-cp311-win_amd64.whl.metadata (60 kB)
Collecting thop>=0.1.1 (from -r requirements.txt (line 14))
  Downloading thop-0.1.1.post2209072238-py3-none-any.whl.metadata (2.7 kB)
Collecting torch>=1.8.0 (from -r requirements.txt (line 15))
  Downloading torch-2.5.0-cp311-cp311-win_amd64.whl.metadata (28 kB)
Collecting torchvision>=0.9.0 (from -r requirements.txt (line 16))
  Downloading torchvision-0.20.0-cp311-cp311-win_amd64.whl.metadata (6.2 kB)
Collecting tqdm>=4.66.3 (from -r requirements.txt (line 17))
  Downloading tqdm-4.66.5-py3-none-any.whl.metadata (57 kB)
Collecting ultralytics>=8.2.34 (from -r requirements.txt (line 18))
  Downloading ultralytics-8.3.20-py3-none-any.whl.metadata (34 kB)
Collecting pandas>=1.1.4 (from -r requirements.txt (line 27))
  Downloading pandas-2.2.3-cp311-cp311-win_amd64.whl.metadata (19 kB)
Collecting seaborn>=0.11.0 (from -r requirements.txt (line 28))
  Downloading seaborn-0.13.2-py3-none-any.whl.metadata (5.4 kB)
Requirement already satisfied: setuptools>=70.0.0 in d:\anaconda3\envs\backbone5\lib\site-packages (from -r requirements.txt (line 42)) (75.1.0)
Collecting gitdb<5,>=4.0.1 (from gitpython>=3.1.30->-r requirements.txt (line 5))
  Downloading gitdb-4.0.11-py3-none-any.whl.metadata (1.2 kB)
Collecting contourpy>=1.0.1 (from matplotlib>=3.3->-r requirements.txt (line 6))
  Downloading contourpy-1.3.0-cp311-cp311-win_amd64.whl.metadata (5.4 kB)
Collecting cycler>=0.10 (from matplotlib>=3.3->-r requirements.txt (line 6))
  Downloading cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)
Collecting fonttools>=4.22.0 (from matplotlib>=3.3->-r requirements.txt (line 6))
  Downloading fonttools-4.54.1-cp311-cp311-win_amd64.whl.metadata (167 kB)
Collecting kiwisolver>=1.3.1 (from matplotlib>=3.3->-r requirements.txt (line 6))
  Downloading kiwisolver-1.4.7-cp311-cp311-win_amd64.whl.metadata (6.4 kB)
Collecting packaging>=20.0 (from matplotlib>=3.3->-r requirements.txt (line 6))
  Downloading packaging-24.1-py3-none-any.whl.metadata (3.2 kB)
Collecting pyparsing>=2.3.1 (from matplotlib>=3.3->-r requirements.txt (line 6))
  Downloading pyparsing-3.2.0-py3-none-any.whl.metadata (5.0 kB)
Collecting python-dateutil>=2.7 (from matplotlib>=3.3->-r requirements.txt (line 6))
  Downloading python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB)
Collecting charset-normalizer<4,>=2 (from requests>=2.32.2->-r requirements.txt (line 12))
  Downloading charset_normalizer-3.4.0-cp311-cp311-win_amd64.whl.metadata (34 kB)
Collecting idna<4,>=2.5 (from requests>=2.32.2->-r requirements.txt (line 12))
  Downloading idna-3.10-py3-none-any.whl.metadata (10 kB)
Collecting urllib3<3,>=1.21.1 (from requests>=2.32.2->-r requirements.txt (line 12))
  Downloading urllib3-2.2.3-py3-none-any.whl.metadata (6.5 kB)
Collecting certifi>=2017.4.17 (from requests>=2.32.2->-r requirements.txt (line 12))
  Downloading certifi-2024.8.30-py3-none-any.whl.metadata (2.2 kB)
Collecting filelock (from torch>=1.8.0->-r requirements.txt (line 15))
  Downloading filelock-3.16.1-py3-none-any.whl.metadata (2.9 kB)
Collecting typing-extensions>=4.8.0 (from torch>=1.8.0->-r requirements.txt (line 15))
  Downloading typing_extensions-4.12.2-py3-none-any.whl.metadata (3.0 kB)
Collecting networkx (from torch>=1.8.0->-r requirements.txt (line 15))
  Downloading networkx-3.4.2-py3-none-any.whl.metadata (6.3 kB)
Collecting jinja2 (from torch>=1.8.0->-r requirements.txt (line 15))
  Downloading jinja2-3.1.4-py3-none-any.whl.metadata (2.6 kB)
Collecting fsspec (from torch>=1.8.0->-r requirements.txt (line 15))
  Downloading fsspec-2024.10.0-py3-none-any.whl.metadata (11 kB)
Collecting sympy==1.13.1 (from torch>=1.8.0->-r requirements.txt (line 15))
  Downloading sympy-1.13.1-py3-none-any.whl.metadata (12 kB)
Collecting mpmath<1.4,>=1.1.0 (from sympy==1.13.1->torch>=1.8.0->-r requirements.txt (line 15))
  Downloading mpmath-1.3.0-py3-none-any.whl.metadata (8.6 kB)
Collecting colorama (from tqdm>=4.66.3->-r requirements.txt (line 17))
  Downloading colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)
Collecting py-cpuinfo (from ultralytics>=8.2.34->-r requirements.txt (line 18))
  Downloading py_cpuinfo-9.0.0-py3-none-any.whl.metadata (794 bytes)
Collecting ultralytics-thop>=2.0.0 (from ultralytics>=8.2.34->-r requirements.txt (line 18))
  Downloading ultralytics_thop-2.0.9-py3-none-any.whl.metadata (9.3 kB)
Collecting pytz>=2020.1 (from pandas>=1.1.4->-r requirements.txt (line 27))
  Downloading pytz-2024.2-py2.py3-none-any.whl.metadata (22 kB)
Collecting tzdata>=2022.7 (from pandas>=1.1.4->-r requirements.txt (line 27))
  Downloading tzdata-2024.2-py2.py3-none-any.whl.metadata (1.4 kB)
Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->gitpython>=3.1.30->-r requirements.txt (line 5))
  Downloading smmap-5.0.1-py3-none-any.whl.metadata (4.3 kB)
Collecting six>=1.5 (from python-dateutil>=2.7->matplotlib>=3.3->-r requirements.txt (line 6))
  Downloading six-1.16.0-py2.py3-none-any.whl.metadata (1.8 kB)
Collecting MarkupSafe>=2.0 (from jinja2->torch>=1.8.0->-r requirements.txt (line 15))
  Downloading MarkupSafe-3.0.2-cp311-cp311-win_amd64.whl.metadata (4.1 kB)

train

(backbone5) D:\anaconda3\envs\backbone5\yolov5>python train.py --device cpu
Creating new Ultralytics Settings v0.0.6 file ✅
View Ultralytics Settings with 'yolo settings' or at 'C:\Users\Administrator\AppData\Roaming\Ultralytics\settings.json'
Update Settings with 'yolo settings key=value', i.e. 'yolo settings runs_dir=path/to/dir'. For help see https://docs.ultralytics.com/quickstart/#ultralytics-settings.
train: weights=yolov5s.pt, cfg=, data=data\coco128.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=16, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, evolve_population=data\hyps, resume_evolve=None, bucket=, cache=None, image_weights=False, device=cpu, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest, ndjson_console=False, ndjson_file=False
github: up to date with https://github.com/ultralytics/yolov5
YOLOv5  v7.0-378-g2f74455a Python-3.11.3 torch-2.5.0+cpu CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/

Dataset not found , missing paths ['D:\\anaconda3\\envs\\backbone5\\datasets\\coco128\\images\\train2017']
Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/coco128.zip to coco128.zip...
100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 6.66M/6.66M [01:08<00:00, 102kB/s]
Dataset download success  (129.5s), saved to D:\anaconda3\envs\backbone5\datasets
Downloading https://github.com/ultralytics/assets/releases/download/v0.0.0/Arial.ttf to C:\Users\Administrator\AppData\Roaming\Ultralytics\Arial.ttf...
100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 755k/755k [00:01<00:00, 698kB/s]
Downloading https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt to yolov5s.pt...
 95%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████ 96%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████ 96%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 14.1M/14.1M [01:45<00:00, 141kB/s]

                 from  n    params  module                                  arguments
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]
  2                -1  1     18816  models.common.C3                        [64, 64, 1]
  3                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
  4                -1  2    115712  models.common.C3                        [128, 128, 2]
  5                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]
  6                -1  3    625152  models.common.C3                        [256, 256, 3]
  7                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]
  8                -1  1   1182720  models.common.C3                        [512, 512, 1]
  9                -1  1    656896  models.common.SPPF                      [512, 512, 5]
 10                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
 11                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 12           [-1, 6]  1         0  models.common.Concat                    [1]
 13                -1  1    361984  models.common.C3                        [512, 256, 1, False]
 14                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]
 15                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 16           [-1, 4]  1         0  models.common.Concat                    [1]
 17                -1  1     90880  models.common.C3                        [256, 128, 1, False]
 18                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]
 19          [-1, 14]  1         0  models.common.Concat                    [1]
 20                -1  1    296448  models.common.C3                        [256, 256, 1, False]
 21                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
 22          [-1, 10]  1         0  models.common.Concat                    [1]
 23                -1  1   1182720  models.common.C3                        [512, 512, 1, False]
 24      [17, 20, 23]  1    229245  models.yolo.Detect                      [80, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
Model summary: 214 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs
Transferred 349/349 items from yolov5s.pt
optimizer: SGD(lr=0.01) with parameter groups 57 weight(decay=0.0), 60 weight(decay=0.0005), 60 bias
train: Scanning D:\anaconda3\envs\backbone5\datasets\coco128\labels\train2017... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:10<00:00, 12.32it/s]
train: New cache created: D:\anaconda3\envs\backbone5\datasets\coco128\labels\train2017.cache
val: Scanning D:\anaconda3\envs\backbone5\datasets\coco128\labels\train2017.cache... 126 images, 2 backgrounds, 0 corrupt: 100%|██████████| 128/128 [00:00<?, ?it/s]

AutoAnchor: 4.27 anchors/target, 0.994 Best Possible Recall (BPR). Current anchors are a good fit to dataset
Plotting labels to runs\train\exp\labels.jpg...
D:\anaconda3\envs\backbone5\yolov5\train.py:355: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
  scaler = torch.cuda.amp.GradScaler(enabled=amp)
Image sizes 640 train, 640 val
Using 8 dataloader workers
Logging results to runs\train\exp
Starting training for 100 epochs...

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
  0%|          | 0/8 [00:00<?, ?it/s]D:\anaconda3\envs\backbone5\yolov5\train.py:412: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(amp):
       0/99         0G    0.04429    0.06439    0.01391        197        640:  12%|█▎        | 1/8 [00:22<02:34, 22.05D:\anaconda3\envs\backbone5\yolov5\train.py:412: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(amp):
       0/99         0G    0.04407    0.05901    0.01749        154        640:  25%|██▌       | 2/8 [00:29<01:19, 13.32D:\anaconda3\envs\backbone5\yolov5\train.py:412: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(amp):
       0/99         0G    0.04451    0.05735    0.01674        150        640:  38%|███▊      | 3/8 [00:36<00:51, 10.39D:\anaconda3\envs\backbone5\yolov5\train.py:412: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(amp):
       0/99         0G    0.04477    0.06103    0.01689        248        640:  50%|█████     | 4/8 [00:43<00:36,  9.19D:\anaconda3\envs\backbone5\yolov5\train.py:412: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(amp):
       0/99         0G    0.04568    0.06436    0.01707        254        640:  62%|██████▎   | 5/8 [00:50<00:25,  8.37D:\anaconda3\envs\backbone5\yolov5\train.py:412: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(amp):
       0/99         0G    0.04574    0.06618    0.01657        261        640:  75%|███████▌  | 6/8 [00:57<00:15,  7.98D:\anaconda3\envs\backbone5\yolov5\train.py:412: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(amp):
       0/99         0G    0.04622    0.06545     0.0164        196        640:  88%|████████▊ | 7/8 [01:04<00:07,  7.59D:\anaconda3\envs\backbone5\yolov5\train.py:412: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(amp):
       0/99         0G    0.04545    0.06536    0.01645        195        640: 100%|██████████| 8/8 [01:11<00:00,  8.89
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 4/4 [00:16<00:00,  4.22s/it]
                   all        128        929      0.698      0.635      0.714      0.481
```c
```c
100 epochs completed in 1.967 hours.
Optimizer stripped from runs\train\exp\weights\last.pt, 14.8MB
Optimizer stripped from runs\train\exp\weights\best.pt, 14.8MB
Validating runs\train\exp\weights\best.pt...
Fusing layers...
Model summary: 157 layers, 7225885 parameters, 0 gradients, 16.4 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 4/4 [00:13<00:00,  3.36s/it]
                   all        128        929       0.89      0.933      0.957      0.773
                person        128        254      0.963      0.898      0.961      0.763
               bicycle        128          6      0.991          1      0.995      0.662
                   car        128         46      0.912      0.676      0.771      0.434
            motorcycle        128          5      0.919          1      0.995      0.881
              airplane        128          6      0.931          1      0.995      0.867
                   bus        128          7      0.857          1      0.995      0.858
                 train        128          3      0.891          1      0.995      0.913
                 truck        128         12      0.954      0.833      0.972      0.752
                  boat        128          6      0.898      0.833      0.972      0.597
         traffic light        128         14      0.764      0.571      0.744      0.412
             stop sign        128          2       0.85          1      0.995      0.846
                 bench        128          9          1      0.951      0.995       0.76
                  bird        128         16      0.978          1      0.995      0.846
                   cat        128          4          1      0.983      0.995      0.872
                   dog        128          9      0.973          1      0.995      0.862
                 horse        128          2      0.804          1      0.995      0.895
              elephant        128         17      0.969      0.941      0.974      0.823
                  bear        128          1      0.759          1      0.995      0.995
                 zebra        128          4      0.899          1      0.995      0.995
               giraffe        128          9          1      0.949      0.995      0.883
              backpack        128          6      0.882      0.833      0.972       0.71
              umbrella        128         18      0.962      0.944       0.98      0.783
               handbag        128         19      0.916      0.842      0.879       0.61
                   tie        128          7      0.929      0.857      0.858      0.724
              suitcase        128          4      0.911          1      0.995      0.823
               frisbee        128          5      0.951          1      0.995      0.772
                  skis        128          1       0.72          1      0.995      0.697
             snowboard        128          7      0.951      0.857      0.902      0.708
           sports ball        128          6      0.955      0.833      0.837      0.477
                  kite        128         10      0.767          1      0.995      0.586
          baseball bat        128          4          1      0.944      0.995      0.655
        baseball glove        128          7      0.661      0.571      0.658      0.463
            skateboard        128          5      0.917          1      0.995      0.896
         tennis racket        128          7      0.791      0.714      0.823      0.669
                bottle        128         18      0.889      0.778      0.903      0.651
            wine glass        128         16      0.735      0.938      0.888      0.616
                   cup        128         36      0.929      0.972      0.975      0.758
                  fork        128          6          1      0.925      0.995      0.821
                 knife        128         16      0.839      0.875      0.947      0.622
                 spoon        128         22      0.956      0.988      0.989      0.685
                  bowl        128         28      0.909      0.857      0.889      0.738
                banana        128          1      0.857          1      0.995      0.895
              sandwich        128          2      0.631          1      0.995      0.945
                orange        128          4      0.769          1      0.995      0.865
              broccoli        128         11      0.964          1      0.995      0.788
                carrot        128         24      0.959      0.983      0.992      0.788
               hot dog        128          2      0.835          1      0.995      0.921
                 pizza        128          5      0.971          1      0.995      0.903
                 donut        128         14      0.966          1      0.995      0.931
                  cake        128          4      0.894          1      0.995      0.946
                 chair        128         35      0.939      0.943      0.987      0.804
                 couch        128          6      0.879          1      0.995      0.968
          potted plant        128         14       0.97          1      0.995      0.876
                   bed        128          3      0.776          1      0.995      0.929
          dining table        128         13          1      0.972      0.995      0.823
                toilet        128          2      0.841          1      0.995      0.895
                    tv        128          2      0.834          1      0.995      0.946
                laptop        128          3      0.676      0.667      0.669      0.468
                 mouse        128          2      0.837          1      0.995      0.648
                remote        128          8       0.71       0.75      0.797       0.63
            cell phone        128          8       0.88      0.919      0.982      0.649
             microwave        128          3      0.881          1      0.995      0.931
                  oven        128          5      0.926          1      0.995      0.883
                  sink        128          6       0.91      0.833      0.872       0.71
          refrigerator        128          5      0.919          1      0.995      0.912
                  book        128         29      0.938      0.828      0.942      0.592
                 clock        128          9      0.954          1      0.995        0.9
                  vase        128          2      0.834          1      0.995      0.846
              scissors        128          1      0.913          1      0.995      0.378
            teddy bear        128         21      0.923          1      0.995      0.862
            toothbrush        128          5       0.91          1      0.995      0.868
Results saved to runs\train\exp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值