CMake-3.23.2
https://cmake.org/download/
cmake -version
cmake version 3.23.2
OpenCV-4.5.5
https://opencv.org/releases/
Dlib-19.24
http://dlib.net/
CUDA-11.6 + cuDNN-8.4
https://developer.download.nvidia.cn/compute/cuda/11.6.1/local_installers/cuda_11.6.1_511.65_windows.exe
https://developer.download.nvidia.cn/compute/cudnn/secure/8.4.0/local_installers/11.6/cudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip?NVxi2VZ91Bmsq17yUNQLWSv-a1y0zwkyR4-3dxy3TLqb3EVVdt7UBgq_SYOcdb60dCYUu_qlsAf3RYu4JVjrwWlzod1ozTsdq1tmuxxs1hMY1wx6GqfV4VlNrwHSb5EOA785RnyR8IvfGChyXUKJ6gY6xOKz_oE6LxXaB5uIkcHeqZK7hbYSRZHUXcpZcQX_wN6775BmGjI0NuedHCiqyuB4&t=eyJscyI6IndlYnNpdGUiLCJsc2QiOiJkZXZlbG9wZXIubnZpZGlhLmNvbVwvY3VkYS10b29sa2l0LWFyY2hpdmUifQcudnn-windows-x86_64-8.4.0.27_cuda11.6-archive.zip
MiniConda
https://conda.io/en/latest/miniconda.html
Torch-1.11.0
https://pytorch.org
https://download.pytorch.org/whl/cu113/torch-1.11.0%2Bcu113-cp38-cp38-win_amd64.whl
https://download.pytorch.org/whl/cu113/torchvision-0.12.0%2Bcu113-cp38-cp38-win_amd64.whl

Check GPU
import torch
import torchvision
print(torch.__version__)
print(torch.version.cuda)
print(torch.cuda.is_available())
print(torch.cuda.get_device_name())
1.11.0+cu113
11.3
True
NVIDIA GeForce RTX 2060
Annotation Line ( Safe Color LUT )
var listSeedColor = function() {
var alpha = ['00', '33', '66', '99', 'CC', 'FF'];
return alpha;
};
var listSafeColor = function() {
var alpha = [];
var seedColor = listSeedColor();
var iLen = seedColor.length;
var iColor = 0;
for(var red = 0; red < iLen; red++) {
for(var green = 0; green < iLen; green++) {
for(var blue = 0; blue < iLen; blue++) {
alpha[alpha.length] = '#' + seedColor[red] + seedColor[green] + seedColor[blue];
}
};
};
return alpha;
};

HTML5 Elastic-Band Technology
该博客介绍了如何搭建深度学习环境,包括安装CMake 3.23.2、OpenCV 4.5.5、Dlib 19.24、CUDA 11.6+cuDNN 8.4,以及使用MiniConda管理环境。此外,还展示了如何验证PyTorch 1.11.0的安装及GPU支持,通过运行代码检查了GPU信息(NVIDIA GeForce RTX 2060)。
1612

被折叠的 条评论
为什么被折叠?



