m. Deep Learning Based Object Recognition Techniques fo

本文探讨了深度学习在医疗影像分析中的应用,尤其是针对疾病诊断和预测。研究涉及CNN、ResNet和LSTM等算法,并通过定制方法提高了特定疾病检测任务的性能。文章介绍了深度学习的基本概念,包括预处理流程、模型设计,并强调了在医疗环境中应用深度学习所面临的挑战和解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Deep learning has revolutionized the field of computer vision and image processing by enabling machine learning models to learn from large datasets without hand-crafted features or labeled data. In this paper, we will explore deep learning based object recognition techniques for applications in healthcare industry such as diagnosis and prognosis of diseases using chest X-ray images. We have reviewed a few state-of-the-art algorithms including convolutional neural networks (CNN), residual networks, and long short-term memory networks (LSTM). Moreover, we have developed several customized methods on top of these traditional architectures to enhance their performance on specific disease detection tasks. Our experimental results show th

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值