[数位DP + 三进制状态压缩] K - Balanced Numbers SPOJ - BALNUM

本文介绍了一种使用状态压缩动态规划方法来计算指定区间内平衡数的数量。平衡数是一种特殊的整数,其特点在于所有偶数位上的数字出现次数为奇数次,而所有奇数位上的数字出现次数为偶数次。文章详细解释了如何通过三进制状态压缩来高效地解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

BALNUM - Balanced Numbers

no tags 

 

Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

1)      Every even digit appears an odd number of times in its decimal representation

2)      Every odd digit appears an even number of times in its decimal representation

For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

Input

The first line contains an integer T representing the number of test cases.

A test case consists of two numbers A and B separated by a single space representing the interval. You may assume that 1 <= A <= B <= 1019 

Output

For each test case, you need to write a number in a single line: the amount of balanced numbers in the corresponding interval

Example

Input:
2
1 1000
1 9
Output:
147
4

 Submit solution!

 

/// 每个数出现次数的可能性 0 奇数 偶数
/// 分别用0 1 2 表示 
/// 三进制的状态压缩
#include <bits/stdc++.h>
using namespace std;

int ch[30];
long long dp[30][60000];
int mi[11] = {1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049};

bool judge(int sum)
{
	int a[10];  // 各数字出现次数状态
	for (int i = 9; i >= 0; i--)
	{
		a[i] = sum / mi[i];
		sum %= mi[i];
	}

	bool ff = 1;
	for (int i = 9; i >= 0; i--)
	{
		if (a[i] == 0)
			continue;
		if (i % 2 == 0 && a[i] == 2)
			ff = 0;
		if (i % 2 == 1 && a[i] == 1)
			ff = 0;
	}

	if (!ff)
		return 0;
	else
		return 1;
}

int change (int sum, int i)
{
	int t = (sum % mi[i + 1]) / mi[i]; // i 出现次数的状态
	if (t == 2)
		sum -= mi[i];
	else
		sum += mi[i];
	return sum;
}

long long dfs(int pos, int sum, bool lim)
{
	if (pos == 0)
		return judge(sum);

	if (!lim && dp[pos][sum] != -1)
		return dp[pos][sum];

	long long res = 0;
	int up = lim ? ch[pos] : 9;
	for (int i = 0; i <= up; i++)
	{
		/// 前导零
		res += dfs(pos - 1, sum == 0 && i == 0 ? 0 : change(sum, i), lim && (i == up));
	}
	if (!lim)
		dp[pos][sum] = res;
	return res;
}

long long solve(long long x)
{
	int w = 0;
	while (x)
	{
		ch[++w] = x % 10;
		x /= 10;
	}
	return dfs(w, 0, 1);
}

int main()
{
	memset(dp, -1, sizeof dp);
	int t;
	scanf("%d", &t);
	while (t--)
	{
		long long a, b;
		scanf("%lld %lld", &a, &b);
		printf("%lld\n", solve(b) - solve(a - 1));
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值