一、由WindowOrganizerController接收WCT
在WindowContainerTransaction的发送一文中,我们分析了WindowContainerTransaction在客户端中有两种发送方式,都是通过WindowOrganizer的相关方法,最终跨进程将WindowContainerTransaction发送给了服务端的WindowOrganizerController,本文来分析一下WindowOrganizerController是如何应用这些从客户端传过来的WindowContainerTransaction的。
WindowOrganizer的两种发送方式,WindowOrganizer#applyTransaction和WindowOrganizer#applySyncTransaction,分别对应WindowOrganizerController#applyTransaction和WindowOrganizerController#applySyncTransaction:
@Override
public void applyTransaction(WindowContainerTransaction t) {
enforceTaskPermission("applyTransaction()");
if (t == null) {
throw new IllegalArgumentException("Null transaction passed to applySyncTransaction");
}
final long ident = Binder.clearCallingIdentity();
try {
synchronized (mGlobalLock) {
applyTransaction(t, -1 /*syncId*/, null /*transition*/);
}
} finally {
Binder.restoreCallingIdentity(ident);
}
}
@Override
public int applySyncTransaction(WindowContainerTransaction t,
IWindowContainerTransactionCallback callback) {
enforceTaskPermission("applySyncTransaction()");
if (t == null) {
throw new IllegalArgumentException("Null transaction passed to applySyncTransaction");
}
final long ident = Binder.clearCallingIdentity();
try {
synchronized (mGlobalLock) {
/**
* If callback is non-null we are looking to synchronize this transaction by
* collecting all the results in to a SurfaceFlinger transaction and then delivering
* that to the given transaction ready callback. See {@link BLASTSyncEngine} for the
* details of the operation. But at a high level we create a sync operation with a
* given ID and an associated callback. Then we notify each WindowContainer in this
* WindowContainer transaction that it is participating in a sync operation with
* that ID. Once everything is notified we tell the BLASTSyncEngine "setSyncReady"
* which means that we have added everything to the set. At any point after this,
* all the WindowContainers will eventually finish applying their changes and notify
* the BLASTSyncEngine which will deliver the Transaction to the callback.
*/
int syncId = -1;
if (callback != null) {
syncId = startSyncWithOrganizer(callback);
}
applyTransaction(t, syncId, null /*transition*/);
if (syncId >= 0) {
setSyncReady(syncId);
}
return syncId;
}
} finally {
Binder.restoreCallingIdentity(ident);
}
}
WindowOrganizerController#applyTransaction代表了异步应用WindowContainerTransaction,WindowOrganizerController#applySyncTransaction代表了同步应用WindowContainerTransaction。
WindowOrganizerController#applyTransaction的内容很简单,直接调用了同名的private方法。
WindowOrganizerController#applySyncTransaction,除了调用同名private方法applyTransaction之外,还有一些和同步相关的处理,但是这些操作与我们要分析的WindowContainerTransaction的应用无关,这部分会在其他笔记中继续探究,本篇就只分析和WindowContainerTransaction应用相关的部分,即专注WindowOrganizerController#applyTransaction方法的内容。
二、WindowContainerTransaction的应用
/**
* @param syncId If non-null, this will be a sync-transaction.
* @param transition A transition to collect changes into.
*/
private void applyTransaction(@NonNull WindowContainerTransaction t, int syncId,
@Nullable Transition transition) {
int effects = 0;
ProtoLog.v(WM_DEBUG_WINDOW_ORGANIZER, "Apply window transaction, syncId=%d", syncId);
mService.deferWindowLayout();
try {
if (transition != null) {
// First check if we have a display rotation transition and if so, update it.
final DisplayContent dc = DisplayRotation.getDisplayFromTransition(transition);
if (dc != null && transition.mChanges.get(dc).mRotation != dc.getRotation()) {
// Go through all tasks and collect them before the rotation
// TODO(shell-transitions): move collect() to onConfigurationChange once
// wallpaper handling is synchronized.
dc.forAllTasks(task -> {
if (task.isVisible()) transition.collect(task);
});
dc.getInsetsStateController().addProvidersToTransition();
dc.sendNewConfiguration();
effects |= TRANSACT_EFFECTS_LIFECYCLE;
}
}
ArraySet<WindowContainer> haveConfigChanges = new ArraySet<>();
Iterator<Map.Entry<IBinder, WindowContainerTransaction.Change>> entries =
t.getChanges().entrySet().iterator();
while (entries.hasNext()) {
final Map.Entry<IBinder, WindowContainerTransaction.Change> entry = entries.next();
final WindowContainer wc = WindowContainer.fromBinder(entry.getKey());
if (wc == null || !wc.isAttached()) {
Slog.e(TAG, "Attempt to operate on detached container: " + wc);
continue;
}
// Make sure we add to the syncSet before performing
// operations so we don't end up splitting effects between the WM
// pending transaction and the BLASTSync transaction.
if (syncId >= 0) {
addToSyncSet(syncId, wc);
}
if (transition != null) transition.collect(wc);
int containerEffect = applyWindowContainerChange(wc, entry.getValue());
effects |= containerEffect;
// Lifecycle changes will trigger ensureConfig for everything.
if ((effects & TRANSACT_EFFECTS_LIFECYCLE) == 0
&& (containerEffect & TRANSACT_EFFECTS_CLIENT_CONFIG) != 0) {
haveConfigChanges.add(wc);
}
}
// Hierarchy changes
final List<WindowContainerTransaction.HierarchyOp> hops = t.getHierarchyOps();
final int hopSize = hops.size();
if (hopSize > 0) {
final boolean isInLockTaskMode = mService.isInLockTaskMode();
for (int i = 0; i < hopSize; ++i) {
effects |= applyHierarchyOp(hops.get(i), effects, syncId, transition,
isInLockTaskMode);
}
}
// Queue-up bounds-change transactions for tasks which are now organized. Do
// this after hierarchy ops so we have the final organized state.
entries = t.getChanges().entrySet().iterator();
while (entries.hasNext()) {
final Map.Entry<IBinder, WindowContainerTransaction.Change> entry = entries.next();
final WindowContainer wc = WindowContainer.fromBinder(entry.getKey());
if (wc == null || !wc.isAttached()) {
Slog.e(TAG, "Attempt to operate on detached container: " + wc);
continue;
}
final Task task = wc.asTask();
final Rect surfaceBounds = entry.getValue().getBoundsChangeSurfaceBounds();
if (task == null || !task.isAttached() || surfaceBounds == null) {
continue;
}
if (!task.isOrganized()) {
final Task parent = task.getParent() != null ? task.getParent().asTask() : null;
// Also allow direct children of created-by-organizer tasks to be
// controlled. In the future, these will become organized anyways.
if (parent == null || !parent.mCreatedByOrganizer) {
throw new IllegalArgumentException(
"Can't manipulate non-organized task surface " + task);
}
}
final SurfaceControl.Transaction sft = new SurfaceControl.Transaction();
final SurfaceControl sc = task.getSurfaceControl();
sft.setPosition(sc, surfaceBounds.left, surfaceBounds.top);
if (surfaceBounds.isEmpty()) {
sft.setWindowCrop(sc, null);
} else {
sft.setWindowCrop(sc, surfaceBounds.width(), surfaceBounds.height());
}
task.setMainWindowSizeChangeTransaction(sft);
}
if ((effects & TRANSACT_EFFECTS_LIFECYCLE) != 0) {
// Already calls ensureActivityConfig
mService.mRootWindowContainer.ensureActivitiesVisible(null, 0, PRESERVE_WINDOWS);
mService.mRootWindowContainer.resumeFocusedTasksTopActivities();
} else if ((effects & TRANSACT_EFFECTS_CLIENT_CONFIG) != 0) {
final PooledConsumer f = PooledLambda.obtainConsumer(
ActivityRecord::ensureActivityConfiguration,
PooledLambda.__(ActivityRecord.class), 0,
true /* preserveWindow */);
try {
for (int i = haveConfigChanges.size() - 1; i >= 0; --i) {
haveConfigChanges.valueAt(i).forAllActivities(f);
}
} finally {
f.recycle();
}
}
if ((effects & TRANSACT_EFFECTS_CLIENT_CONFIG) == 0) {
mService.addWindowLayoutReasons(LAYOUT_REASON_CONFIG_CHANGED);
}
} finally {
mService.continueWindowLayout();
}
}
这个方法可以很明显被分成5部分:
1 Transition相关
if (transition != null) {
// First check if we have a display rotation transition and if so, update it.
final DisplayContent dc = DisplayRotation.getDisplayFromTransition(transition);
if (dc != null && transition.mChanges.get(dc).mRotation != dc.getRotation()) {
// Go through all tasks and collect them before the rotation
// TODO(shell-transitions): move collect() to onConfigurationChange once
// wallpaper handling is synchronized.
dc.forAllTasks(task -> {
if (task.isVisible()) transition.collect(task);
});
dc.getInsetsStateController().addProvidersToTransition();
dc.sendNewConfiguration();
effects |= TRANSACT_EFFECTS_LIFECYCLE;
}
}
Transition是Android 12新加的内容,没有接触过,而且从WindowOrganizerController#applyTransaction和WindowOrganizerController#applySyncTransaction传过来的transition参数也是null,因此暂不分析。
2 Change相关
ArraySet<WindowContainer> haveConfigChanges = new ArraySet<>();
Iterator<Map.Entry<IBinder, WindowContainerTransaction.Change>> entries =
t.getChanges().entrySet().iterator();
while (entries.hasNext()) {
final Map.Entry<IBinder, WindowContainerTransaction.Change> entry = entries.next();
final WindowContainer wc = WindowContainer.fromBinder(entry.getKey());
if (wc == null || !wc.isAttached()) {
Slog.e(TAG, "Attempt to operate on detached container: " + wc);
continue;
}
// Make sure we add to the syncSet before performing
// operations so we don't end up splitting effects between the WM
// pending transaction and the BLASTSync transaction.
if (syncId >= 0) {
addToSyncSet(syncId, wc);
}
if (transition != null) transition.collect(wc);
int containerEffect = applyWindowContainerChange(wc, entry.getValue());
effects |= containerEffect;
// Lifecycle changes will trigger ensureConfig for everything.
if ((effects & TRANSACT_EFFECTS_LIFECYCLE) == 0
&& (containerEffect & TRANSACT_EFFECTS_CLIENT_CONFIG) != 0) {
haveConfigChanges.add(wc);
}
}
根据我们之前对WindowContainerTransaction的相关了解,知道WindowContainerTransaction的内部类Change是用来处理WindowContainer的配置属性方面的更改。
这部分的主要工作是,遍历传入的WindowContainerTransaction的mChanges:
1)、将mChanges中的储存的token转化为WindowContainer。
2)、调用WindowOrganizerController#addToSyncSet将当前WindowContainer添加到同步集合中,这一处理属于WCT同步机制相关的部分,跳过。
3)、调用WIndowOrganizerController#applyWindowContainerChange去应用Change里的设置,属于重点分析内容。
4)、如果本次修改没有影响到TRANSACT_EFFECTS_LIFECYCLE但是对TRANSACT_EFFECTS_CLIENT_CONFIG产生了影响,那么将当前WindowContainer添加到haveConfigChanges队列中,该队列保存了所有Configuration发生改变的WindowContainer。
重点分析WIndowOrganizerController#applyWindowContainerChange。
private int applyWindowContainerChange(WindowContainer wc,
WindowContainerTransaction.Change c) {
sanitizeWindowContainer(wc);
int effects = applyChanges(wc, c);
if (wc instanceof DisplayArea) {
effects |= applyDisplayAreaChanges(wc.asDisplayArea(), c);
} else if (wc instanceof Task) {
effects |= applyTaskChanges(wc.asTask(), c);
}
return effects;
}
这里根据当前WindowContainer是Task还是DisplayArea有不同的处理方式,但是在此之前都走了WindowOrganizerController#applyChanges。
2.1 WindowOrganizerController#sanitizeWindowContainer
private void sanitizeWindowContainer(WindowContainer wc) {
if (!(wc instanceof Task) && !(wc instanceof DisplayArea)) {
throw new RuntimeException("Invalid token in task or displayArea transaction");
}
}
如果当前WindowContainer不是Task或者DisplayArea类型的,则抛出异常。
说明当前WindowContainerTransaction支持对Task和DisplayArea进行修改,如果对ActivityRecord,WindowState之类的修改则会报错(其实也无法对WindowContainer的其他类型的子类进行修改,因为只有Task和DisplayArea会在构造方法中初始化RemoteToken类型的成员变量mRemoteToken)。
2.2 WindowOrganizerController#applyChanges
private int applyChanges(WindowContainer container, WindowContainerTransaction.Change change) {
// The "client"-facing API should prevent bad changes; however, just in case, sanitize
// masks here.
final int configMask = change.getConfigSetMask() & CONTROLLABLE_CONFIGS;
final int windowMask = change.getWindowSetMask() & CONTROLLABLE_WINDOW_CONFIGS;
int effects = 0;
final int windowingMode = change.getWindowingMode();
if (configMask != 0) {
if (windowingMode > -1 && windowingMode != container.getWindowingMode()) {
// Special handling for when we are setting a windowingMode in the same transaction.
// Setting the windowingMode is going to call onConfigurationChanged so we don't
// need it called right now. Additionally, some logic requires everything in the
// configuration to change at the same time (ie. surface-freezer requires bounds
// and mode to change at the same time).
final Configuration c = container.getRequestedOverrideConfiguration();
c.setTo(change.getConfiguration(), configMask, windowMask);
} else {
final Configuration c =
new Configuration(container.getRequestedOverrideConfiguration());
c.setTo(change.getConfiguration(), configMask, windowMask);
container.onRequestedOverrideConfigurationChanged(c);
}
effects |= TRANSACT_EFFECTS_CLIENT_CONFIG;
}
if ((change.getChangeMask() & WindowContainerTransaction.Change.CHANGE_FOCUSABLE) != 0) {
if (container.setFocusable(change.getFocusable())) {
effects |= TRANSACT_EFFECTS_LIFECYCLE;
}
}
if (windowingMode > -1) {
if (mService.isInLockTaskMode()
&& WindowConfiguration.inMultiWindowMode(windowingMode)) {
throw new UnsupportedOperationException("Not supported to set multi-window"
+ " windowing mode during locked task mode.");
}
container.setWindowingMode(windowingMode);
}
return effects;
}
2.2.1 判断Configuration是否改变
final int configMask = change.getConfigSetMask() & CONTROLLABLE_CONFIGS;
CONTROLLABLE_CONFIGS的定义是:
static final int CONTROLLABLE_CONFIGS = ActivityInfo.CONFIG_WINDOW_CONFIGURATION
| ActivityInfo.CONFIG_SMALLEST_SCREEN_SIZE | ActivityInfo.CONFIG_SCREEN_SIZE;
包括了四个方面的修改:
1 WindowContainerTransaction#setBounds
2 WindowContainerTransaction#setAppBounds
3 WindowContainerTransaction#setSmallestScreenWidthDp
4 WindowContainerTransaction#setScreenSizeDp
如果当前WindowContainerTransaction有这几方面的修改,那么进入到2.2.2。
2.2.2 应用Configuration
final int windowingMode = change.getWindowingMode();
if (configMask != 0) {
if (windowingMode > -1 && windowingMode != container.getWindowingMode()) {
// Special handling for when we are setting a windowingMode in the same transaction.
// Setting the windowingMode is going to call onConfigurationChanged so we don't
// need it called right now. Additionally, some logic requires everything in the
// configuration to change at the same time (ie. surface-freezer requires bounds
// and mode to change at the same time).
final Configuration c = container.getRequestedOverrideConfiguration();
c.setTo(change.getConfiguration(), configMask, windowMask);
} else {
final Configuration c =
new Configuration(container.getRequestedOverrideConfiguration());
c.setTo(change.getConfiguration(), configMask, windowMask);
container.onRequestedOverrideConfigurationChanged(c);
}
effects |= TRANSACT_EFFECTS_CLIENT_CONFIG;
}
走到这里说明针对当前WindowContainer的Configuration有了一些特殊的设置,一般的做法是先获取到当前WindowContainer的mRequestedOverrideConfiguration一份拷贝,然后让这份拷贝应用这些特殊设置,最后调用onRequestedOverrideConfigurationChanged完成修改,即1.2.2的做法,但是这里根据从WindowContainerTransaction中取到的WindowingMode又分了两种情况:
1)、如果从Change中拿出的windowingMode无效,那么先获取到当前WindowContainer的mRequestedOverrideConfiguration的一份拷贝,然后再将Change中的部分赋值给这个拷贝,最后调用ConfigurationContainer#onRequestedOverrideConfigurationChanged完成Configuration的修改。
2)、如果这里WindowContainerTransaction中设置了一个WindowingMode,该WindowingMode大于-1(表示有效),且不同于当前WindowContainer的WindowingMode,那么就表示此次应用会改变当前WindowContainer的WindowingMode。需要知道的是,上一步中的ConfigurationContainer#onRequestedOverrideConfigurationChanged和2.2.4中的ConfigurationContainer#setWindowingMode都会触发ConfigurationContainer#onConfigurationChanged,但是因为一些逻辑要求关于configuration的修改需一次完成,同时为了避免触发多次ConfigurationContainer#onConfigurationChanged,这里我们直接拿到当前WindowContainer的mRequestedOverrideConfiguration的引用,然后将从Change中提取的Configuration覆盖掉当前WindowContainer的mRequestedOverrideConfiguration,这就表示目前我们只想修改WindowContainer的mRequestedOverrideConfiguration,但是不触发ConfigurationContainer#onConfigurationChanged(因为这一步在2.2.4中肯定会得到执行)。
2.2.3 应用focusable属性
if ((change.getChangeMask() & WindowContainerTransaction.Change.CHANGE_FOCUSABLE) != 0) {
if (container.setFocusable(change.getFocusable())) {
effects |= TRANSACT_EFFECTS_LIFECYCLE;
}
}
用WIndowContainer#setFocusable设置当前WindowContainer和其子WindowContainer的focusable状态。
2.2.4 应用windowingMode
if (windowingMode > -1) {
if (mService.isInLockTaskMode()
&& WindowConfiguration.inMultiWindowMode(windowingMode)) {
throw new UnsupportedOperationException("Not supported to set multi-window"
+ " windowing mode during locked task mode.");
}
container.setWindowingMode(windowingMode);
}
如果从WindowConfigurationTransaction中取出的WindowingMode大于-1,表示此次WindowConfigurationTransaction希望修改当前WindowContainer的WindowingMode。直接调用ConfigurationContainer#setWindowingMode,这一步会触发ConfigurationContainer#onRequestedOverrideConfigurationChanged,最终调用ConfigurationContainer#onConfigurationChanged将该windowingMode应用到该Task下所有的WindowContainer。
2.3 WindowOrganizerController#applyTaskChanges
分屏模式下,我们处理的WindowContainer都是Task类型的,所以走applyTaskChanges。
private int applyTaskChanges(Task tr, WindowContainerTransaction.Change c) {
int effects = 0;
final SurfaceControl.Transaction t = c.getBoundsChangeTransaction();
if ((c.getChangeMask() & WindowContainerTransaction.Change.CHANGE_HIDDEN) != 0) {
if (tr.setForceHidden(FLAG_FORCE_HIDDEN_FOR_TASK_ORG, c.getHidden())) {
effects = TRANSACT_EFFECTS_LIFECYCLE;
}
}
final int childWindowingMode = c.getActivityWindowingMode();
if (childWindowingMode > -1) {
tr.setActivityWindowingMode(childWindowingMode);
}
if (t != null) {
tr.setMainWindowSizeChangeTransaction(t);
}
Rect enterPipBounds = c.getEnterPipBounds();
if (enterPipBounds != null) {
tr.mDisplayContent.mPinnedTaskController.setEnterPipBounds(enterPipBounds);
}
return effects;
}
1)、Task#setForceHidden,设置Task的forced-hidden状态flag,没怎么接触过,设置了这个Flag会强行标记该Task为不可见。
2)、设置Task的下所有子ActivityRecord的windowingMode。
3)、WindowContainerTransaction#setBoundsChangeTransaction相关,目前接触到的只有WindowManagerProxy的两处,不是很了解,但是这个很容易影响到初次进入分屏时候的Launcher App的bounds。
4)、设置PIP的bounds。
3 HierarchyOp相关
// Hierarchy changes
final List<WindowContainerTransaction.HierarchyOp> hops = t.getHierarchyOps();
final int hopSize = hops.size();
if (hopSize > 0) {
final boolean isInLockTaskMode = mService.isInLockTaskMode();
for (int i = 0; i < hopSize; ++i) {
effects |= applyHierarchyOp(hops.get(i), effects, syncId, transition,
isInLockTaskMode);
}
}
根据我们之前的了解,HierarchyOp主要是用来处理层级结构中的reparent和reorder相关的操作,每一个HierarchyOp对象都包含了一次层级结构调整。
这里遍历WindowContainerTransaction的mHierarchyOps成员变量,对其中保存的每一个HierarchyOp对象,都调用了WindowOrganizerController#applyHierarchyOp进行处理:
private int applyHierarchyOp(WindowContainerTransaction.HierarchyOp hop, int effects,
int syncId, @Nullable Transition transition, boolean isInLockTaskMode) {
final int type = hop.getType();
switch (type) {
case HIERARCHY_OP_TYPE_SET_LAUNCH_ROOT: {
final WindowContainer wc = WindowContainer.fromBinder(hop.getContainer());
final Task task = wc != null ? wc.asTask() : null;
if (task != null) {
task.getDisplayArea().setLaunchRootTask(task,
hop.getWindowingModes(), hop.getActivityTypes());
} else {
throw new IllegalArgumentException("Cannot set non-task as launch root: " + wc);
}
break;
}
case HIERARCHY_OP_TYPE_SET_LAUNCH_ADJACENT_FLAG_ROOT: {
final WindowContainer wc = WindowContainer.fromBinder(hop.getContainer());
final Task task = wc != null ? wc.asTask() : null;
if (task == null) {
throw new IllegalArgumentException("Cannot set non-task as launch root: " + wc);
} else if (!task.mCreatedByOrganizer) {
throw new UnsupportedOperationException(
"Cannot set non-organized task as adjacent flag root: " + wc);
} else if (task.mAdjacentTask == null) {
throw new UnsupportedOperationException(
"Cannot set non-adjacent task as adjacent flag root: " + wc);
}
final boolean clearRoot = hop.getToTop();
task.getDisplayArea().setLaunchAdjacentFlagRootTask(clearRoot ? null : task);
break;
}
case HIERARCHY_OP_TYPE_SET_ADJACENT_ROOTS:
effects |= setAdjacentRootsHierarchyOp(hop);
break;
}
// The following operations may change task order so they are skipped while in lock task
// mode. The above operations are still allowed because they don't move tasks. And it may
// be necessary such as clearing launch root after entering lock task mode.
if (isInLockTaskMode) {
Slog.w(TAG, "Skip applying hierarchy operation " + hop + " while in lock task mode");
return effects;
}
switch (type) {
case HIERARCHY_OP_TYPE_CHILDREN_TASKS_REPARENT:
effects |= reparentChildrenTasksHierarchyOp(hop, transition, syncId);
break;
case HIERARCHY_OP_TYPE_REORDER:
case HIERARCHY_OP_TYPE_REPARENT:
final WindowContainer wc = WindowContainer.fromBinder(hop.getContainer());
if (wc == null || !wc.isAttached()) {
Slog.e(TAG, "Attempt to operate on detached container: " + wc);
break;
}
if (syncId >= 0) {
addToSyncSet(syncId, wc);
}
if (transition != null) {
transition.collect(wc);
if (hop.isReparent()) {
if (wc.getParent() != null) {
// Collect the current parent. It's visibility may change as
// a result of this reparenting.
transition.collect(wc.getParent());
}
if (hop.getNewParent() != null) {
final WindowContainer parentWc =
WindowContainer.fromBinder(hop.getNewParent());
if (parentWc == null) {
Slog.e(TAG, "Can't resolve parent window from token");
break;
}
transition.collect(parentWc);
}
}
}
effects |= sanitizeAndApplyHierarchyOp(wc, hop);
break;
case HIERARCHY_OP_TYPE_LAUNCH_TASK:
final Bundle launchOpts = hop.getLaunchOptions();
final int taskId = launchOpts.getInt(
WindowContainerTransaction.HierarchyOp.LAUNCH_KEY_TASK_ID);
launchOpts.remove(WindowContainerTransaction.HierarchyOp.LAUNCH_KEY_TASK_ID);
mService.startActivityFromRecents(taskId, launchOpts);
break;
}
return effects;
}
Android 11的时候只有reparent和reorder操作,现在支持了7种操作:
public static final int HIERARCHY_OP_TYPE_REPARENT = 0;
public static final int HIERARCHY_OP_TYPE_REORDER = 1;
public static final int HIERARCHY_OP_TYPE_CHILDREN_TASKS_REPARENT = 2;
public static final int HIERARCHY_OP_TYPE_SET_LAUNCH_ROOT = 3;
public static final int HIERARCHY_OP_TYPE_SET_ADJACENT_ROOTS = 4;
public static final int HIERARCHY_OP_TYPE_LAUNCH_TASK = 5;
public static final int HIERARCHY_OP_TYPE_SET_LAUNCH_ADJACENT_FLAG_ROOT = 6;
其中HIERARCHY_OP_TYPE_SET_LAUNCH_ROOT、HIERARCHY_OP_TYPE_SET_ADJACENT_ROOTS和HIERARCHY_OP_TYPE_SET_LAUNCH_ADJACENT_FLAG_ROOT这三种操作由于没有改变Task的顺序,因此支持在lock task mode下设置,其余四种则不行。
3.1 HIERARCHY_OP_TYPE_SET_LAUNCH_ROOT
case HIERARCHY_OP_TYPE_SET_LAUNCH_ROOT: {
final WindowContainer wc = WindowContainer.fromBinder(hop.getContainer());
final Task task = wc != null ? wc.asTask() : null;
if (task != null) {
task.getDisplayArea().setLaunchRootTask(task,
hop.getWindowingModes(), hop.getActivityTypes());
} else {
throw new IllegalArgumentException("Cannot set non-task as launch root: " + wc);
}
break;
}
将传入的Task作为指定的的WindowingMode类型和ActivityType类型的launchRootTask,这赋予了客户端设置launchRootTask的能力。
launchRootTask,顾名思义,指的是App启动后为该App创建的Task应该归属于哪个rootTask,分屏流程中指定的launchRootTask,由TaskOrganizerController创建,父节点为TaskDisplayArea。直接看一处具体的调用,在进入分屏的过程中调用WindowManagerProxy#applyEnterSplit:
wct.setLaunchRoot(tiles.mSecondary.token, CONTROLLED_WINDOWING_MODES,
CONTROLLED_ACTIVITY_TYPES);
这里的tiles.mSecondary.token即是分屏的secondaryRootTask,CONTROLLED_WINDOWING_MODES的定义是:
private static final int[] CONTROLLED_WINDOWING_MODES = {
WINDOWING_MODE_FULLSCREEN,
WINDOWING_MODE_SPLIT_SCREEN_SECONDARY,
WINDOWING_MODE_UNDEFINED
};
CONTROLLED_ACTIVITY_TYPES的定义是
private static final int[] CONTROLLED_ACTIVITY_TYPES = {
ACTIVITY_TYPE_STANDARD,
ACTIVITY_TYPE_HOME,
ACTIVITY_TYPE_RECENTS,
ACTIVITY_TYPE_UNDEFINED
};
那么很明显,这里的意思是,后续只要是以上WindowingMode类型和ActivityType类型的Task,全部都以分屏的secondaryRootTask为rootTask。这也很好理解,我们希望分屏模式下,启动的新Task仍然处于分屏模式,而不是全屏显示,或者启动到上半屏,以primaryRootTask为rootTask。
关于launchRootTask的使用,需要另开一篇笔记分析。
3.2 HIERARCHY_OP_TYPE_SET_LAUNCH_ADJACENT_FLAG_ROOT
case HIERARCHY_OP_TYPE_SET_LAUNCH_ADJACENT_FLAG_ROOT: {
final WindowContainer wc = WindowContainer.fromBinder(hop.getContainer());
final Task task = wc != null ? wc.asTask() : null;
if (task == null) {
throw new IllegalArgumentException("Cannot set non-task as launch root: " + wc);
} else if (!task.mCreatedByOrganizer) {
throw new UnsupportedOperationException(
"Cannot set non-organized task as adjacent flag root: " + wc);
} else if (task.mAdjacentTask == null) {
throw new UnsupportedOperationException(
"Cannot set non-adjacent task as adjacent flag root: " + wc);
}
final boolean clearRoot = hop.getToTop();
task.getDisplayArea().setLaunchAdjacentFlagRootTask(clearRoot ? null : task);
break;
}
这种情况和HIERARCHY_OP_TYPE_SET_LAUNCH_ROOT类似,上面设置的是指定WindowingMode和ActivityType的Task的rootTask,这里设置的是启动时伴随有FLAG_ACTIVITY_LAUNCH_ADJACENT这个flag的Task的rootTask。
/**
* A launch root task for activity launching with {@link FLAG_ACTIVITY_LAUNCH_ADJACENT} flag.
*/
private Task mLaunchAdjacentFlagRootTask;
最终结果是TaskDisplayArea的mLaunchAdjacentFlagRootTask成员变量赋值为了传入的Task。
这种情况没怎么遇到过,因此不详细分析了。
3.3 HIERARCHY_OP_TYPE_SET_ADJACENT_ROOTS
case HIERARCHY_OP_TYPE_SET_ADJACENT_ROOTS:
effects |= setAdjacentRootsHierarchyOp(hop);
break;
这里进一步调用了WindowOrganizerController#setAdjacentRootsHierarchyOp。
private int setAdjacentRootsHierarchyOp(WindowContainerTransaction.HierarchyOp hop) {
final Task root1 = WindowContainer.fromBinder(hop.getContainer()).asTask();
final Task root2 = WindowContainer.fromBinder(hop.getAdjacentRoot()).asTask();
if (!root1.mCreatedByOrganizer || !root2.mCreatedByOrganizer) {
throw new IllegalArgumentException("setAdjacentRootsHierarchyOp: Not created by"
+ " organizer root1=" + root1 + " root2=" + root2);
}
root1.setAdjacentTask(root2);
return TRANSACT_EFFECTS_LIFECYCLE;
}
这里看到,取出传入的HierarchyOp中保存的两个Task,然后如果这两个Task都是TaskOrganizerController创建的,那么调用Task#setAdjacentTask。
void setAdjacentTask(Task adjacent) {
mAdjacentTask = adjacent;
adjacent.mAdjacentTask = this;
}
Task的成员变量mAdjacent的定义是:
Task mAdjacentTask; // Task adjacent to this one.
那么这里的操作就是设置两个Task互相为相邻Task。
mAdjacentTask我没有接触过,看使用的场景,主要是在判断Task的可见性和获取launchRootTask的时候用到了。
3.4 HIERARCHY_OP_TYPE_CHILDREN_TASKS_REPARENT
case HIERARCHY_OP_TYPE_CHILDREN_TASKS_REPARENT:
effects |= reparentChildrenTasksHierarchyOp(hop, transition, syncId);
break;
这里进一步调用了WindowOrganizerController#setAdjacentRootsHierarchyOp。
private int reparentChildrenTasksHierarchyOp(WindowContainerTransaction.HierarchyOp hop,
@Nullable Transition transition, int syncId) {
WindowContainer currentParent = hop.getContainer() != null
? WindowContainer.fromBinder(hop.getContainer()) : null;
WindowContainer newParent = hop.getNewParent() != null
? WindowContainer.fromBinder(hop.getNewParent()) : null;
if (currentParent == null && newParent == null) {
throw new IllegalArgumentException("reparentChildrenTasksHierarchyOp: " + hop);
} else if (currentParent == null) {
currentParent = newParent.asTask().getDisplayContent().getDefaultTaskDisplayArea();
} else if (newParent == null) {
newParent = currentParent.asTask().getDisplayContent().getDefaultTaskDisplayArea();
}
......
// We want to collect the tasks first before re-parenting to avoid array shifting on us.
final ArrayList<Task> tasksToReparent = new ArrayList<>();
currentParent.forAllTasks((Consumer<Task>) (task) -> {
Slog.i(TAG, " Processing task=" + task);
if (task.mCreatedByOrganizer
|| task.getParent() != finalCurrentParent) {
// We only care about non-organized task that are direct children of the thing we
// are reparenting from.
return;
}
if (newParentInMultiWindow && !task.supportsMultiWindowInDisplayArea(newParentTda)) {
Slog.e(TAG, "reparentChildrenTasksHierarchyOp non-resizeable task to multi window,"
+ " task=" + task);
return;
}
if (!ArrayUtils.contains(hop.getActivityTypes(), task.getActivityType())) return;
if (!ArrayUtils.contains(hop.getWindowingModes(), task.getWindowingMode())) return;
tasksToReparent.add(task);
}, !hop.getToTop());
final int count = tasksToReparent.size();
for (int i = 0; i < count; ++i) {
final Task task = tasksToReparent.get(i);
if (syncId >= 0) {
addToSyncSet(syncId, task);
}
if (transition != null) transition.collect(task);
if (newParent instanceof TaskDisplayArea) {
// For now, reparenting to display area is different from other reparents...
task.reparent((TaskDisplayArea) newParent, hop.getToTop());
} else {
task.reparent((Task) newParent,
hop.getToTop() ? POSITION_TOP : POSITION_BOTTOM,
false /*moveParents*/, "processChildrenTaskReparentHierarchyOp");
}
}
if (transition != null) transition.collect(newParent);
return TRANSACT_EFFECTS_LIFECYCLE;
}
很长一大串,但是逻辑很简单,首先从currentParent中筛选出所有可以进行reparent操作的Task,全部添加到一个临时变量tasksToReparent中,然后遍历tasksToReparent,将tasksToReparent中所有的Task全部reparent到newParent之下,也是这个方法名称的字面含义。
HIERARCHY_OP_TYPE_CHILDREN_TASKS_REPARENT的起点是客户端调用WindowContainerTransaction#reparentTasks,这个方法暂时没有看到分屏有哪个地方有用到。
3.5 HIERARCHY_OP_TYPE_LAUNCH_TASK
case HIERARCHY_OP_TYPE_LAUNCH_TASK:
final Bundle launchOpts = hop.getLaunchOptions();
final int taskId = launchOpts.getInt(
WindowContainerTransaction.HierarchyOp.LAUNCH_KEY_TASK_ID);
launchOpts.remove(WindowContainerTransaction.HierarchyOp.LAUNCH_KEY_TASK_ID);
mService.startActivityFromRecents(taskId, launchOpts);
break;
逻辑很简单,基于WindowContainerTransaction中保存的TaskId和Bundle对象,调用ATMS#startActivityFromRecents去启动这个Task,这种启动方式一般是Launcher会用到。
3.6 HIERARCHY_OP_TYPE_REORDER和HIERARCHY_OP_TYPE_REPARENT
分屏经常用到的,本文的分析重点。
case HIERARCHY_OP_TYPE_REORDER:
case HIERARCHY_OP_TYPE_REPARENT:
final WindowContainer wc = WindowContainer.fromBinder(hop.getContainer());
......
effects |= sanitizeAndApplyHierarchyOp(wc, hop);
break;
过滤掉了一些非必要信息,直奔重点WindowOrganizerController#sanitizeAndApplyHierarchyOp。
在继续分析这个方法之前,需要回顾一下最初介绍WindowContainerTransaction的时候,提到的其内部类HierarchyOp,该类用来帮助进行层级调整操作,三个比较重要的成员变量是:
// Container we are performing the operation on.
private final IBinder mContainer;
// If this is same as mContainer, then only change position, don't reparent.
private final IBinder mReparent;
// Moves/reparents to top of parent when {@code true}, otherwise moves/reparents to bottom.
private final boolean mToTop;
mContainer是当前我们想要进行层级调整的WindowContainer,mReparent是为mContainer指定的新的父WindowContainer,mToTop代表在本次层级调整之后是否需要把mContainer移动到mReparent的top。
接下来分析该方法内容:
private int sanitizeAndApplyHierarchyOp(WindowContainer container,
WindowContainerTransaction.HierarchyOp hop) {
// 调整层级之前先进行必要判断,当前WindowContainer必须能够转化为一个Task对象,且隶属于一个Display中。
final Task task = container.asTask();
if (task == null) {
throw new IllegalArgumentException("Invalid container in hierarchy op");
}
final DisplayContent dc = task.getDisplayContent();
if (dc == null) {
Slog.w(TAG, "Container is no longer attached: " + task);
return 0;
}
final Task as = task;
// 调用WindowContainerTransaction.HierarchyOp#isReparent判断此次层级调整是reparent还是reorder。
if (hop.isReparent()) {
// 如果此次层级调整是一次reparent操作,那么需要满足这两个条件之一,才能继续往下走,否则抛出异常:
// 1)、当前Task是一个rootTask。
// 2)、如果当前Task不是一个rootTask,那么其直接父Task是由TaskOrganzierController创建的。
final boolean isNonOrganizedRootableTask =
task.isRootTask() || task.getParent().asTask().mCreatedByOrganizer;
if (isNonOrganizedRootableTask) {
// 继续检测newParent的合法性:
// 如果从HierarchyOp中取出newParent为空,那么将其赋值为默认的TaskDisplayArea,如果还为空,那么只能中止此次reparent操作。
WindowContainer newParent = hop.getNewParent() == null
? dc.getDefaultTaskDisplayArea()
: WindowContainer.fromBinder(hop.getNewParent());
if (newParent == null) {
Slog.e(TAG, "Can't resolve parent window from token");
return 0;
}
// 现在我们有了一个不为空的Task和newParent对象。
// 判断当前Task的父容器是否是newParent。
if (task.getParent() != newParent) {
if (newParent.asTaskDisplayArea() != null) {
// 如果newParent是一个TaskDisplayArea实例,那么特殊处理。
// For now, reparenting to displayarea is different from other reparents...
as.reparent(newParent.asTaskDisplayArea(), hop.getToTop());
} else if (newParent.asTask() != null) {
// 目前newParent要么是一个TaskDisplayArea实例,要么是一个Task实例,如果两者都不是,那么直接抛出异常。
if (newParent.inMultiWindowMode() && task.isLeafTask()) {
// 针对多窗口模式,需要额外判断。
if (newParent.inPinnedWindowingMode()) {
// 不允许把Task移动到PIP模式的Task中。
Slog.w(TAG, "Can't support moving a task to another PIP window..."
+ " newParent=" + newParent + " task=" + task);
return 0;
}
if (!task.supportsMultiWindowInDisplayArea(
newParent.asTask().getDisplayArea())) {
// 不允许把不支持分屏的Task移动到分屏rootTask中。
Slog.w(TAG, "Can't support task that doesn't support multi-window"
+ " mode in multi-window mode... newParent=" + newParent
+ " task=" + task);
return 0;
}
}
// 直接调用Task#reparent完成reparent操作。
task.reparent((Task) newParent,
hop.getToTop() ? POSITION_TOP : POSITION_BOTTOM,
false /*moveParents*/, "sanitizeAndApplyHierarchyOp");
} else {
// 目前只支持对Task类型或者TaskDisplayArea类型进行reparent的操作。
throw new RuntimeException("Can only reparent task to another task or"
+ " taskDisplayArea, but not " + newParent);
}
} else {
// newParent和当前Task的parent相同,那么此次就不是一个reparent操作,而是reorder,
// 并且要调整的是当前Task的rootTask在与其对应的TaskDisplayArea中的位置。
// 综合起来,走到这里有两种情况:
// 1)、task是rootTask,newParent是一个TaskDisplayArea实例,那么调整task的rootTask(也就是它自己?)在TaskDisplayArea中的位置。
// 2)、task不是rootTask,newParent是一个由TaskOrganizerController创建的Task,那么调整newParent在TaskDisplayArea中的位置。
final Task rootTask = (Task) (
(newParent != null && !(newParent instanceof TaskDisplayArea))
? newParent : task.getRootTask());
as.getDisplayArea().positionChildAt(
hop.getToTop() ? POSITION_TOP : POSITION_BOTTOM, rootTask,
false /* includingParents */);
}
} else {
// 这里的leafTask指的是那些父容器为Task,且该Task不是由TaskOrganizerController创建的那些Task。
// 目前不支持对这些Task进行reparent操作。
throw new RuntimeException("Reparenting leaf Tasks is not supported now. " + task);
}
} else {
// 如果此次层级调整不是reparent,那么就是一次reorder操作。
// 直接取到当前Task的父WindowContainer,然后调用WindowContainer#positionChildAt调整当前Task在父容器中的位置即可。
task.getParent().positionChildAt(
hop.getToTop() ? POSITION_TOP : POSITION_BOTTOM,
task, false /* includingParents */);
}
return TRANSACT_EFFECTS_LIFECYCLE;
}
这部分内容分析比较繁琐,直接加到注释里。
针对reaprent的部分总结一下:
首先能进行reparent的Task,必须满足以下两种条件之一:
1)、当前Task是一个rootTask。
2)、如果当前Task不是一个rootTask,那么其直接的父Task是由TaskOrganzierController创建的。
也就是说,我们无法去调整那些一般的HOME类型、RECENTS类型的Task中的那些子嵌套Task。
那么再跟据newParent和task的当前parent之间的关系,可以将reparent的情形总结为以下几种:
1)、newParent为null,那么将当前Task从原来的父WindowContainer移动到当前TaskDisplayArea中,这种情况在退出分屏的流程中常见。
2)、newParent不为null,且不等于当前Task的当前父WindowContainer,那么将该task移动到newParent中,这种情况在进入分屏的流程中常见。
3)、newParent不为null,且等于task的当前父WindowContainer,那么只调整task对应的rootTask在TaskDisplayArea的顺序,这种情况比较少见,应该是为了cover逻辑上的bug,因为有更加直接的方法WindowContainerTransaction#reorder方法可以使用。
4 WCT#setBoundsChangeTransaction相关
// Queue-up bounds-change transactions for tasks which are now organized. Do
// this after hierarchy ops so we have the final organized state.
entries = t.getChanges().entrySet().iterator();
while (entries.hasNext()) {
final Map.Entry<IBinder, WindowContainerTransaction.Change> entry = entries.next();
final WindowContainer wc = WindowContainer.fromBinder(entry.getKey());
if (wc == null || !wc.isAttached()) {
Slog.e(TAG, "Attempt to operate on detached container: " + wc);
continue;
}
final Task task = wc.asTask();
final Rect surfaceBounds = entry.getValue().getBoundsChangeSurfaceBounds();
if (task == null || !task.isAttached() || surfaceBounds == null) {
continue;
}
if (!task.isOrganized()) {
final Task parent = task.getParent() != null ? task.getParent().asTask() : null;
// Also allow direct children of created-by-organizer tasks to be
// controlled. In the future, these will become organized anyways.
if (parent == null || !parent.mCreatedByOrganizer) {
throw new IllegalArgumentException(
"Can't manipulate non-organized task surface " + task);
}
}
final SurfaceControl.Transaction sft = new SurfaceControl.Transaction();
final SurfaceControl sc = task.getSurfaceControl();
sft.setPosition(sc, surfaceBounds.left, surfaceBounds.top);
if (surfaceBounds.isEmpty()) {
sft.setWindowCrop(sc, null);
} else {
sft.setWindowCrop(sc, surfaceBounds.width(), surfaceBounds.height());
}
task.setMainWindowSizeChangeTransaction(sft);
}
这部分理解的还不够,之前碰到过问题是和这个相关的,可以看当时的分析。
5 更新Activity的可见性和Configuration
if ((effects & TRANSACT_EFFECTS_LIFECYCLE) != 0) {
// Already calls ensureActivityConfig
mService.mRootWindowContainer.ensureActivitiesVisible(null, 0, PRESERVE_WINDOWS);
mService.mRootWindowContainer.resumeFocusedTasksTopActivities();
} else if ((effects & TRANSACT_EFFECTS_CLIENT_CONFIG) != 0) {
final PooledConsumer f = PooledLambda.obtainConsumer(
ActivityRecord::ensureActivityConfiguration,
PooledLambda.__(ActivityRecord.class), 0,
true /* preserveWindow */);
try {
for (int i = haveConfigChanges.size() - 1; i >= 0; --i) {
haveConfigChanges.valueAt(i).forAllActivities(f);
}
} finally {
f.recycle();
}
}
if ((effects & TRANSACT_EFFECTS_CLIENT_CONFIG) == 0) {
mService.addWindowLayoutReasons(LAYOUT_REASON_CONFIG_CHANGED);
}
1)、如果有生命周期相关的更新,就调用
if ((effects & TRANSACT_EFFECTS_LIFECYCLE) != 0) {
// Already calls ensureActivityConfig
mService.mRootWindowContainer.ensureActivitiesVisible(null, 0, PRESERVE_WINDOWS);
mService.mRootWindowContainer.resumeFocusedTasksTopActivities();
}
重新更新系统中的所有Activity的可见性和Configuration,并且寻找新的top Task和resume Activty。
2)、如果没有生命周期相关方面的更新,只有Configuration相关的更新,那么执行:
else if ((effects & TRANSACT_EFFECTS_CLIENT_CONFIG) != 0) {
final PooledConsumer f = PooledLambda.obtainConsumer(
ActivityRecord::ensureActivityConfiguration,
PooledLambda.__(ActivityRecord.class), 0,
true /* preserveWindow */);
try {
for (int i = haveConfigChanges.size() - 1; i >= 0; --i) {
haveConfigChanges.valueAt(i).forAllActivities(f);
}
} finally {
f.recycle();
}
}
只针对这些发生了Configuration更新的WindowContainer,遍历其下的所有子ActivityRecord,调用ActivityRecord#ensureActivityConfiguration进行Configuration相关的更新。
三、总结
WindowContainerTransaction的应用,就是WindowOrganizerController读取WindowContainerTransaction中保存的信息,按照Transition、Change、HierarchyOp和BoundsChange这几部分进行分别处理。本文重点分析了Change和HierarchyOp部分,因为这两部分和分屏是重点相关的。
另外本文所说的WindowContainerTransaction的应用,特指从WindowContainerTransaction中读取信息然后应用到WindowContainer上这一行为,应用的结果是WM端的WindowContainer层级结构中一些WindowContainer的改变(属性和层级)的立即改变。
除此之外WindowContainerTransaction的应用还具有同步的特点,这一点在本文中并未体现,后续在分析WindowContainerTransaction的同步机制中再去深入探究。