A Twisty Movement_dp

本文介绍了一个关于龙舞表演的问题:如何通过反转表演者队列的一部分,使得整个表演序列的最长非递减子序列尽可能长。文章提供了一段C++代码实现,通过动态规划的方法求解最优反转区间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A. A Twisty Movement
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

A dragon symbolizes wisdom, power and wealth. On Lunar New Year's Day, people model a dragon with bamboo strips and clothes, raise them with rods, and hold the rods high and low to resemble a flying dragon.

A performer holding the rod low is represented by a 1, while one holding it high is represented by a 2. Thus, the line of performers can be represented by a sequence a1, a2, ..., an.

Little Tommy is among them. He would like to choose an interval [l, r] (1 ≤ l ≤ r ≤ n), then reverse al, al + 1, ..., ar so that the length of the longest non-decreasing subsequence of the new sequence is maximum.

A non-decreasing subsequence is a sequence of indices p1, p2, ..., pk, such that p1 < p2 < ... < pk and ap1 ≤ ap2 ≤ ... ≤ apk. The length of the subsequence is k.

Input

The first line contains an integer n (1 ≤ n ≤ 2000), denoting the length of the original sequence.

The second line contains n space-separated integers, describing the original sequence a1, a2, ..., an (1 ≤ ai ≤ 2, i = 1, 2, ..., n).

Output

Print a single integer, which means the maximum possible length of the longest non-decreasing subsequence of the new sequence.

Examples
Input
Copy
4
1 2 1 2
Output
Copy
4
Input
Copy
10
1 1 2 2 2 1 1 2 2 1
Output
Copy
9
Note

In the first example, after reversing [2, 3], the array will become [1, 1, 2, 2], where the length of the longest non-decreasing subsequence is 4.

In the second example, after reversing [3, 7], the array will become [1, 1, 1, 1, 2, 2, 2, 2, 2, 1], where the length of the longest non-decreasing subsequence is 9.

#include<bits/stdc++.h>
#define L long long
using namespace std;
int n,x[2010],f[2010][5],a[5]={0,1,2,1,2};
int main()
{
//	freopen("in.txt","r",stdin);
	//freopen(".out","w",stdout);
	int i,j;
	scanf("%d",&n);
	for(i=1;i<=n;i++)
	  scanf("%d",&x[i]);
	for(i=1;i<=n+1;i++)
	  for(j=1;j<=4;j++){
        f[i][j]=max(f[i-1][j],f[i-1][j-1])+(x[i]==a[j]);
	  }
	printf("%d\n",f[n+1][4]);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值