1021. Deepest Root (25)_2018_3_25

本文介绍了一种算法,用于寻找给定图中最深的根节点,即能够形成最高树状结构的根节点。同时处理了非树状图的错误情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1021. Deepest Root (25)

时间限制
1500 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<=10000) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N-1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

Output Specification:

For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print "Error: K components" where K is the number of connected components in the graph.

Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components

提交代码

#include<bits/stdc++.h>
using namespace std;

const int N=1e5+10;

vector<int> v[N];
int f[N];
bool vis[N];
int d[N];


int find(int x){
	if(f[x]==-1)return x;
	return f[x]=find(f[x]);
}

int dfs(int s){
	int ans=0;
	if(vis[s])return 0;
	vis[s]=true;
	for(auto u:v[s]){
		if(!vis[u])
		ans=max(ans,dfs(u));
	}
	return ans+1;
}

int main(){
	int n;
	scanf("%d",&n);
	memset(f,-1,sizeof(f));
	for(int i=1;i<n;i++){
		int x,y;
		scanf("%d%d",&x,&y);
		v[x].push_back(y);
		v[y].push_back(x);
		x=find(x);
		y=find(y);
		if(x!=y)
		f[y]=x;
	}
	int sum=0;
	for(int i=1;i<=n;i++)
	if(find(i)==i)sum++;
	if(sum>1){
		printf("Error: %d components\n",sum);return 0;
	}
	int mm=-1;
	for(int i=1;i<=n;i++){
		memset(vis,0,sizeof(vis));
		d[i]=dfs(i);
		mm=max(mm,d[i]);
	}
	bool f=false;
	for(int i=1;i<=n;i++)
	if(d[i]==mm){
		printf("%d\n",i);
	}
}



# -*- coding: utf-8 -*- &#39;&#39;&#39;请在Begin-End之间补充代码, 完成BinaryTree类&#39;&#39;&#39; class BinaryTree: # 创建左右子树为空的根结点 def __init__(self, rootObj): self.key = rootObj # 成员key保存根结点数据项 self.leftChild = None # 成员leftChild初始化为空 self.rightChild = None # 成员rightChild初始化为空 # 把newNode插入到根的左子树 def insertLeft(self, newNode): if self.leftChild is None: self.leftChild = BinaryTree(newNode) # 左子树指向由newNode所生成的BinaryTree else: t = BinaryTree(newNode) # 创建一个BinaryTree类型的新结点t t.leftChild = self.leftChild # 新结点的左子树指向原来根的左子树 self.leftChild = t # 根结点的左子树指向结点t # 把newNode插入到根的右子树 def insertRight(self, newNode): if self.rightChild is None: # 右子树指向由newNode所生成的BinaryTree # ********** Begin ********** # self.rightChild = BinaryTree(newNode) # ********** End ********** # else: t = BinaryTree(newNode) t.rightChild = self.rightChild self.rightChild = t # ********** End ********** # # 取得右子树,返回值是一个BinaryTree类型的对象 def getRightChild(self): # ********** Begin ********** # return self.rightChild # ********** End ********** # # 取得左子树 def getLeftChild(self): # ********** Begin ********** # return self.leftChild # ********** End ********** # # 设置根结点的值 def setRootVal(self, obj): # 将根结点的值赋值为obj # ********** Begin ********** # self.key = obj # ********** End ********** # # 取得根结点的值 def getRootVal(self): # ********** Begin ********** # return self.key # ********** End ********** # # 主程序 input_str = input() nodes = input_str.split(&#39;,&#39;) # 创建根节点 root = BinaryTree(nodes[0]) # 插入左子树和右子树 if len(nodes) > 1: root.insertLeft(nodes[1]) if len(nodes) > 2: root.insertRight(nodes[2]) # 前三行输出:对创建的二叉树按编号顺序输出结点 print(root.getRootVal()) left_child = root.getLeftChild
03-18
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值