python自动化测试中装饰器@ddt与@data源码深入解析

在Python自动化测试中,ddt(Data-Driven Tests)是一个流行的库,允许开发人员通过装饰器轻松创建数据驱动的测试用例。@ddt和 @data装饰器是这个库中常用的工具。

ddt库的概念

ddt库利用装饰器扩展了Python的unittest测试框架,使得可以在单个测试方法上应用多组参数进行测试。它避免了编写重复的测试代码,并增强了测试用例的可读性和维护性。

@ddt装饰器

@ddt装饰器应用于测试类。它是类装饰器,负责动态地向测试类添加测试方法。当你在测试类上应用 @ddt装饰器时,它会寻找类中用 @data或其他ddt提供的装饰器标记的测试方法,并为每一组数据生成一个独立的测试方法实例。

@data装饰器

@data装饰器用于测试方法。它允许你为一个测试方法提供多组测试数据。这些数据被用来生成随着数据变化而重复执行的测试方法。这意味着你可以仅编写一个测试方法,并通过不同的数据集多次运行这个方法。

源码解析

@ddt和 @data实际上是函数装饰器。在Python中,装饰器主要是依靠闭包来实现对函数或类的包装。

以下是一个简化的 @data装饰器源码的逻辑示例:

def data(*values):
    def test_decorator(func):
        if not hasattr(func, "__test_params__"):
            func.__test_params__ = []
        func.__test_params__.extend(values)
        return func
    return test_decorator

@data(1, 2, 3)
def test_method(self, value):
    # ...测试逻辑

在这个简化版本中,你可以看到 @data实际上是一个包装函数的包装器。它添加一个特殊的属性 __test_params__到被装饰的函数上,其中包含了所有的测试参数。

接着,@ddt装饰器的源码逻辑大概如下:

def ddt(cls):
    for name, func in list(cls.__dict__.items()):
        if hasattr(func, "__test_params__"):
            for idx, params in enumerate(func.__test_params__):
                test_name = f"{name}_{idx}"
                test_func = ddt_helper(func, **params)
                setattr(cls, test_name, test_func)
    return cls

def ddt_helper(func, **params):
    def test(self):
        return func(self, **params)
    test.__name__ = func.__name__
    return test

这里的 ddt装饰器查找所有带有 __test_params__属性的测试方法,并且对每一组参数创建一个新的测试方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值