大模型微调终极方案:LoRA、QLoRA原理详解与LLaMA-Factory、Xtuner实战对比

一、微调概述

微调(Fine-tuning)是深度学习中的一种常见方法,它通常用于在预训练模型的基础上进行进一步的训练,以适应特定的任务。微调的主要目的是利用预训练模型已经学习到的通用知识,从而提高模型在特定任务上的性能。常见的微调框架有 LLaMA-FactoryXTuner 等。

1.1 微调步骤

以微调 Bert 为例,微调通常包括以下几个步骤:

  1. 加载预训练的BERT模型。
  2. 修改模型结构,将最后一层全连接层的参数进行修改,以适应文本分类任务。
  3. 设置优化器和损失函数,例如Adam优化器和交叉熵损失函数。
  4. 训练模型,使用微调技巧,如学习率调整、权重衰减、数据增强和早停。
  5. 评估模型性能,使用测试集进行评估,计算准确率、召回率等指标。

1.2 微调场景

微调通常用于以下场景:

  • 修改模型的输出层
  • 修改模型的自我认知
  • 改变模型的对话风格

二、微调方法

2.1 三种方法

微调模式主要分为三种:

  1. 增量微调:在预训练模型的基础上,仅对新增的附加参数(如Adapter层)进行训练。这种方法可以显著降低显存和算力需求,适用于资源受限的环境。
  2. 局部微调:在预训练模型的基础上,对模型的局部层(如输出层、注意力头)进行训练。这种方法可以在保证效果的同时,降低显存和算力需求。
  3. 全量微调:在预训练模型的基础上,对模型的所有参数进行训练。这种方法可以完全适配新数据,但需要较高的显存和算力需求。

2.2 方法对比

对比维度 增量微调 局部微调 全量微调
参数调整范围 仅新增的附加参数(如Adapter层) 模型的部分层(如输出层、注意力头) 模型全部参数
显存/算力需求 极低(仅需训练少量参数) 中等(需训练部分层梯度) 极高(需更新所有参数)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CodeSilence

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值