Xtuner极简微调指南:3步实现Qwen1.5中文对话模型优化

环境背景:Ubuntu24.04 系统 + Python3.10 + Cuda12.4 + Cudnn9.1 + torch2.6.0 + transformers4.48
测试环境 requirements.txt 下载

一、介绍

Xtuner 是一款用来微调大语言模型(LLM)的工具。在微调的过程中,用户可以直观地看到验证数据的训练情况。因此,Xtuner 更适合用来微调主观类的数据。

二、安装使用

2.1 构建虚拟环境

推荐使用 Python-3.10 的 conda 虚拟环境安装 XTuner

2.1.1 创建虚拟环境
conda create -n xtuner python=3.10 -y && conda activate xtuner
2.1.2 安装Xtuner
  • 方案a:通过 pip 直接安装
pip install -U 'xtuner[deepspeed]'
  • 方案b:通过源码安装【推荐】
# 拉取 XTuner
git clone <https://github.com/InternLM/xtuner.git>
cd xtuner
pip install -e '.[all]'

2.2 下载模型

此文以从 modelscope 平台下载 Qwen/Qwen1.5-0.5B-Chat 模型为例

from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen1.5-0.5B-Chat',cache_dir='/root/work/ai/models/modelscope')

2.3 微调准备

2.3.1 创建微调训练配置文件

在 xtuner 的文件夹下找到 xtuner/xtuner/configs/qwen/qwen1_5/qwen1_5_0_5b_chat/qwen1_5_0_5b_chat_qlora_alpaca_e3.py 文件,将该文件复制一份至 xtuner/ 根目录(如果使用其他模型,需要找到对应模型的配置文件
配置文件名中,有形如 <model>_full_*.py<model>_qlora_*.py<model>_int8_lora*.py 的不同文件,作以下说明:

  • full:表示对整个模型的所有参数进行微调

  • qlora:基于量化+LoRA的低资源微调

      model = dict(
          type=SupervisedFinetune,
          use_varlen_attn=use_varlen_attn,
          llm=dict(
              type=AutoModelForCausalLM.from_pretrained,
              pretrained_model_name_or_path=pretrained_model_name_or_path,
              trust_remote_code=True,
              torch_dtype=torch.float16,
              quantization_config=dict(
                  type=BitsAndBytesConfig,
                  load_in_4bit=True,      # 是否开启4位QLoRA量化
                  load_in_8bit=False,     # 是否开启8位QLoRA量化
                  l
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CodeSilence

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值