编译性语言和解释性语言

    编译型语言写的程序执行之前,需要一个专门的编译过程,把程序编译成为机器语言的文件,比如exe文件,以后要运行的话就不用重新翻译了,直接使用编译的结果就行了(exe文
件),因为翻译只做了一次,运行时不需要翻译,所以编译型语言的程序执行效率高。 计算机不能直接理解高级语言,只能直接理解机器语言,所以必须要把高级语言翻译成机器
语言,计算机才能执行高级语言编写的程序。   翻译的方式有两种,一个是编译,一个是解释。两种方式只是翻译的时间不同。编译型语言写的程序执行之前,需要一个专门的编
译过程,把程序编译成为机器语言的文件,比如exe文件,以后要运行的话就不用重新翻译了,直接使用编译的结果就行了(exe文件),因为翻译只做了一次,运行时不需要翻译
,所以编译型语言的程序执行效率高,但也不能一概而论,部分解释型语言的解释器通过在运行时动态优化代码,甚至能够使解释型语言的性能超过编译型语言。   解释则不同,
解释性语言的程序不需要编译,省了道工序,解释性语言在运行程序的时候才翻译,比如解释性basic语言,专门有一个解释器能够直接执行basic程序,每个语句都是执行的时候
才翻译。这样解释性语言每执行一次就要翻译一次,效率比较低。解释是一句一句的翻译。   编译型与解释型,两者各有利弊。前者由于程序执行速度快,同等条件下对系统要求
较低,因此像开发操作系统、大型应用程序、数据库系统等时都采用它,像C/C++、Pascal/Object Pascal(Delphi)等都是编译语言,而一些网页脚本、服务器脚本及辅助开发
接口这样的对速度要求不高、对不同系统平台间的兼容性有一定要求的程序则通常使用解释性语言,如Java、JavaScript、VBScript、Perl、Python、Ruby、MATLAB 等等。  
 但随着硬件的升级和设计思想的变革,编译型和解释型语言越来越笼统,主要体现在一些新兴的高级语言上,而解释型语言的自身特点也使得编译器厂商愿意花费更多成本来优化
解释器,解释型语言性能超过编译型语言也是必然的。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方的例子。 简单的平方问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值