Light oj 1223 - Testing Mailboxes(记忆化)

本文介绍了一个关于火药测试的问题,需要确定最小数量的火药来测试邮箱耐受度。通过递归方法找到最佳测试策略,避免了不必要的资源浪费。

1223 - Testing Mailboxes
Time Limit: 2 second(s)Memory Limit: 32 MB

When monkeys are given some fire-crackers, they have only thing in the mind - to blow things up. Small boxes were easy to blow up, and thus mailboxes became a popular target. Now, a small mailbox manufacturer is interested in how many fire-crackers his new mailbox prototype can withstand without exploding and has hired you to help him. He will provide you with k identical mailbox prototypes each fitting up to m fire-crackers. However, he is not sure of how many fire-crackers he needs to provide you with in order for you to be able to solve his problem, so he asks your help.

The constraints are:

1.      If you blow up a mailbox, you can't use the mailbox again, so if you have only k = 1 mailboxes, you would have to start testing with 1 fire-cracker, then 2 fire-crackers, and so on until it finally exploded. In the worst case, that is if it does not blow up even when filled with m fire-crackers, you would need 1 + 2 + 3 + ... + m = m * (m + 1)/2 fire-crackers.

2.      If a mailbox can withstand x fire-crackers, it can also withstand x-1 fire-crackers.

3.      Upon an explosion, a mailbox is either totally destroyed (blown up) or unharmed, which means that it can be reused in another test explosion.

Now the manufacturer wants you to find the maximum number of fire-crackers that his mailboxes can withstand. Before doing that you have to buy some fire-crackers to test that. So, you need to find the minimum number of fire-crackers you need to buy to test the mailboxes.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing two integers: k (1 ≤ k ≤ 100) and m (1 ≤ m ≤ 100).

Output

For each case, print the case number and the minimum number of fire-crackers you have to buy.

Sample Input

Output for Sample Input

4

1 10

3 73

5 100

1 100

Case 1: 55

Case 2: 382

Case 3: 495

Case 4: 5050

 


SPECIAL THANKS: JANE ALAM JAN (DESCRIPTION, SOLUTION, DATASET)

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<map>

#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define bug printf("hihi\n")

#define eps 1e-12

typedef long long ll;
using namespace std;

#define N 105
#define INF 1000000000
int f[N][N][N];

int dfs(int a,int le,int ri)
{
     if(le>ri) return 0;
     if(f[a][le][ri]!=-1) return f[a][le][ri];
     if(le==ri) return f[a][le][ri]=le;
     int ans=INF;
     for(int i=le;i<=ri;i++)
        ans=min(ans,i+max(dfs(a,i+1,ri),dfs(a-1,le,i-1)));
     return f[a][le][ri]=ans;
}

void inint()
{
    int i,j,k;
    memset(f,-1,sizeof(f));
    for(int i=1;i<N;i++)
        for(int j=i;j<N;j++)
            f[1][i][j]=(i+j)*(j-i+1)/2;

    for(i=2;i<N;i++)
        for(j=1;j<N;j++)
           for(k=j;k<N;k++)
              f[i][j][k]=dfs(i,j,k);
}

int main()
{
    #ifndef ONLINE_JUDGE
       freopen("C:/Users/ksh/Desktop/IN.txt","r",stdin);
    #endif
    inint();
    int i,j,t,ca=0;
    int n,m;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d",&n,&m);
        printf("Case %d: %d\n",++ca,f[n][1][m]);
    }
    return 0;
}






需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值