POJ 2288 Islands and Bridges(状压dp)

探讨了在一个包含岛屿和桥梁的地图上寻找最优路径的问题,该路径需遍历所有岛屿且总价值最大,并考虑了路径上的三角形形成条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Language:
Islands and Bridges
Time Limit: 4000MS Memory Limit: 65536K
Total Submissions: 9312 Accepted: 2424

Description

Given a map of islands and bridges that connect these islands, a Hamilton path, as we all know, is a path along the bridges such that it visits each island exactly once. On our map, there is also a positive integer value associated with each island. We call a Hamilton path the best triangular Hamilton path if it maximizes the value described below. 

Suppose there are n islands. The value of a Hamilton path C1C2...Cn is calculated as the sum of three parts. Let Vi be the value for the island Ci. As the first part, we sum over all the Vi values for each island in the path. For the second part, for each edge CiC i+1 in the path, we add the product Vi*V i+1. And for the third part, whenever three consecutive islands CiC i+1C i+2 in the path forms a triangle in the map, i.e. there is a bridge between Ci and C i+2, we add the product Vi*V i+1*V i+2

Most likely but not necessarily, the best triangular Hamilton path you are going to find contains many triangles. It is quite possible that there might be more than one best triangular Hamilton paths; your second task is to find the number of such paths. 

Input

The input file starts with a number q (q<=20) on the first line, which is the number of test cases. Each test case starts with a line with two integers n and m, which are the number of islands and the number of bridges in the map, respectively. The next line contains n positive integers, the i-th number being the Vi value of island i. Each value is no more than 100. The following m lines are in the form x y, which indicates there is a (two way) bridge between island x and island y. Islands are numbered from 1 to n. You may assume there will be no more than 13 islands. 

Output

For each test case, output a line with two numbers, separated by a space. The first number is the maximum value of a best triangular Hamilton path; the second number should be the number of different best triangular Hamilton paths. If the test case does not contain a Hamilton path, the output must be `0 0'. 

Note: A path may be written down in the reversed order. We still think it is the same path.

Sample Input

2
3 3
2 2 2
1 2
2 3
3 1
4 6
1 2 3 4
1 2
1 3
1 4
2 3
2 4
3 4

Sample Output

22 3
69 1

Source




题意: n个点,要求全部走一遍价值最大,价值的计算是 走过点的值相加  加上 每相邻的两个点的价值相乘,如果相邻的3个点组成三角形还要加上这三个值的乘积


思路 :状压dp,我的解法是想初始化状态,还有看看当前的状态可以更新那些状态




// poj 2288

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector>
#include<set>
#include<map>


#define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1)

#define eps 1e-8
typedef __int64 ll;

#define fre(i,a,b)  for(i = a; i <b; i++)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define bug         pf("Hi\n")

using namespace std;

#define INF 0x3f3f3f3f
#define N 1<<14

ll dp[N][14][14];       // dp[s][i][j] 代表s状态中 i 到达 j 的价值
ll road[N][14][14];     // ........     .....                 路线
ll a[14][14],va[14];
ll n,m;

void solve()
{
	int i,j,k,cur;
	mem(dp,-1);
	mem(road,0);

	fre(i,1,n+1)
	 fre(j,1,n+1)
	  if(a[i][j]&&i!=j)
	  {
	  	 cur=1<<(i-1);
	  	 cur|=1<<(j-1);
	  	 dp[cur][i][j]=va[i]+va[j]+va[i]*va[j];  // i->j  初始化
	  	 road[cur][i][j]=1;
	  }

    ll len=1<<n;
    ll to;

    fre(cur,0,len)
     fre(i,1,n+1)
      {
      	 if(!(cur&(1<<(i-1)))) continue;   //没有经过 i

      	 fre(j,1,n+1)
		{
      	     if(!(cur&(1<<(j-1)))) continue;    //没有经过j

      	     if(!a[i][j]||i==j) continue;      //i j 没有路

      	     if(dp[cur][i][j]==-1) continue;     
      	              //此状态没有被到达过(因为用这个状态更新别的状态)

      	     fre(to,1,n+1)
      	     {
      	     	 if(a[j][to]==0) continue;   //枚举下一个到的点

      	     	 if(i==to||j==to) continue;

                 if(cur&(1<<(to-1))) continue;   //该状态没有to点

      	     	 int temp=dp[cur][i][j]+va[to]+va[j]*va[to];

      	     	 if(a[i][to]) temp+=va[i]*va[j]*va[to];   //形成三角形  

      	     	 int next=cur|(1<<(to-1));

                // if(next==len-1) bug;

      	     	 if(dp[next][j][to]<temp)
				 {
				 	 dp[next][j][to]=temp;
				 	 road[next][j][to]=road[cur][i][j];
				 }
                 else
					if(dp[next][j][to]==temp)
				   {
				 	  road[next][j][to]+=road[cur][i][j];
				   }
      	     }

		}
	}

	ll ans=0,ma=-1;
	len--;

	fre(i,1,n+1)
	 fre(j,1,n+1)
	 {
	 	if(i==j||a[i][j]==0) continue;
	 	if(dp[len][i][j]==-1) continue;

	 	if(dp[len][i][j]>ma)
		{
			ans=road[len][i][j];
			ma=dp[len][i][j];
		}
        else
			if(ma==dp[len][i][j])
			  ans+=road[len][i][j];
	 }


	if(ma==-1)
		printf("0 0\n");
	else
		printf("%I64d %I64d\n",ma,ans/2);


}

int main()
{
	int i,j,t;
	sf(t);

	while(t--)
	{

		scanf("%I64d%I64d",&n,&m);

		fre(i,1,n+1)
		  {
		  	scanf("%I64d",&va[i]);
		  }
		mem(a,0);
		ll s,e;

		while(m--)
		{
			scanf("%I64d%I64d",&s,&e);
			a[s][e]=a[e][s]=1;
		}


		  if(n==1)
		 {
			pf("%I64d 1\n",va[1]);
			continue;
		 }

	  solve();

	}
    return 0;

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值