Lawrence - HDU 2829斜率优化,四边形不等式优化

本文探讨了T.E.劳伦斯在第一次世界大战期间使用有限资源优化铁路攻击策略的问题。通过数学建模,我们设计了一个算法来帮助劳伦斯最小化铁路战略价值,以实现更有效的攻击策略。

Lawrence

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2530    Accepted Submission(s): 1125


Problem Description
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in the Arabian theater and led a group of Arab nationals in guerilla strikes against the Ottoman Empire. His primary targets were the railroads. A highly fictionalized version of his exploits was presented in the blockbuster movie, "Lawrence of Arabia".

You are to write a program to help Lawrence figure out how to best use his limited resources. You have some information from British Intelligence. First, the rail line is completely linear---there are no branches, no spurs. Next, British Intelligence has assigned a Strategic Importance to each depot---an integer from 1 to 100. A depot is of no use on its own, it only has value if it is connected to other depots. The Strategic Value of the entire railroad is calculated by adding up the products of the Strategic Values for every pair of depots that are connected, directly or indirectly, by the rail line. Consider this railroad: 


Its Strategic Value is 4*5 + 4*1 + 4*2 + 5*1 + 5*2 + 1*2 = 49.

Now, suppose that Lawrence only has enough resources for one attack. He cannot attack the depots themselves---they are too well defended. He must attack the rail line between depots, in the middle of the desert. Consider what would happen if Lawrence attacked this rail line right in the middle: 

The Strategic Value of the remaining railroad is 4*5 + 1*2 = 22. But, suppose Lawrence attacks between the 4 and 5 depots: 

The Strategic Value of the remaining railroad is 5*1 + 5*2 + 1*2 = 17. This is Lawrence's best option.

Given a description of a railroad and the number of attacks that Lawrence can perform, figure out the smallest Strategic Value that he can achieve for that railroad. 
 

Input
There will be several data sets. Each data set will begin with a line with two integers, n and m. n is the number of depots on the railroad (1≤n≤1000), and m is the number of attacks Lawrence has resources for (0≤m<n). On the next line will be n integers, each from 1 to 100, indicating the Strategic Value of each depot in order. End of input will be marked by a line with n=0 and m=0, which should not be processed.
 

Output
For each data set, output a single integer, indicating the smallest Strategic Value for the railroad that Lawrence can achieve with his attacks. Output each integer in its own line.
 

Sample Input
4 1 4 5 1 2 4 2 4 5 1 2 0 0
 

Sample Output
17 2
 


题意:有n个数字,你可以通过轰炸铁路,把他们分成m+1段,每段的权值是其中每两个数字的乘积的和,求所有段的权值和的最小值。

思路:我们设dp[i][j]表示前j个数字轰炸了i次,且第j个数字后面的那段路也是炸掉的情况下的最小权值。

我们来看一下转移,假设dp[i][j]由dp[i-1][k1]和dp[i-1][k2],k1<k2转移过来,我们如何判断该选择哪个。

如果我们要选择后者的话,

dp[i-1][k1]+w[k1+1][j]>=dp[i-1][k2]+w[k2+1][j]

w[k1+1][j]-w[k2+1][j]=(sum[k2]-sum[k1])*(sum[j]-sum[k2])+w[k1+1][k2]

所以(sum[k2]-sum[k1])*sum[j]>=dp[i-1][k2]-dp[i-1][k1]+(sum[k2]-sum[k1])*sum[k2]-w[k1+1][k2]

斜率出来后,我们就可以用斜率优化了。

斜率优化代码如下:

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
int T,t,n,m;
ll num[1010],sum[1010],cost[1010][1010],dp[1010][1010];
int q[1010],head,tail;
void DP()
{
    int i,j,k;
    ll p1,p2,y,y1,y2;
    for(i=1;i<=n;i++)
       dp[1][i]=cost[1][i];
    for(i=2;i<=m+1;i++)
    {
        head=tail=0;
        q[0]=i-1;
        for(j=i;j<=n;j++)
        {
            while(head<tail)
            {
                p1=q[head];
                p2=q[head+1];
                y=dp[i-1][p2]-dp[i-1][p1]-cost[p1+1][p2]+sum[p2]*(sum[p2]-sum[p1]);
                if(y<=sum[j]*(sum[p2]-sum[p1]))
                  head++;
                else
                  break;
            }
            k=q[head];
            dp[i][j]=dp[i-1][k]+cost[k+1][j];
            while(head<tail)
            {
                p1=q[tail-1];
                p2=q[tail];
                y1=dp[i-1][p2]-dp[i-1][p1]-cost[p1+1][p2]+sum[p2]*(sum[p2]-sum[p1]);
                y2=dp[i-1][j]-dp[i-1][p2]-cost[p2+1][j]+sum[j]*(sum[j]-sum[p2]);
                if(y1*(sum[j]-sum[p2])>=y2*(sum[p2]-sum[p1]))
                  tail--;
                else
                  break;
            }
            q[++tail]=j;
        }
    }
}
int main()
{
    int i,j,k;
    while(~scanf("%d%d",&n,&m) && n+m>0)
    {
        for(i=1;i<=n;i++)
        {
            scanf("%I64d",&num[i]);
            sum[i]=sum[i-1]+num[i];
        }
        for(k=1;k<=n;k++)
           for(i=1;i+k<=n;i++)
           {
               j=i+k;
               cost[i][j]=cost[i][j-1]+num[j]*(sum[j-1]-sum[i-1]);
           }
        DP();
        printf("%I64d\n",dp[m+1][n]);
    }
}

另外此题还可以用四边形不等式优化。

四边形不等式代码如下:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
int T,t,n,m,s[1010][1010];
ll dp[1010][1010],w[1010][1010],sum[1010],num[1010],INF=1e18;
int main()
{
    int i,j,k;
    ll ret;
    while(~scanf("%d%d",&n,&m) && n+m>0)
    {
        m++;
        for(i=1;i<=n;i++)
        {
            scanf("%I64d",&num[i]);
            sum[i]=sum[i-1]+num[i];
        }
        for(i=1;i<=n;i++)
           for(j=i+1;j<=n;j++)
              w[i][j]=w[i][j-1]+(sum[j-1]-sum[i-1])*num[j];
        for(i=1;i<=m;i++)
           for(j=i+1;j<=n;j++)
              dp[i][j]=INF;
        for(i=1;i<=n;i++)
           dp[1][i]=w[1][i];
        for(i=2;i<=m;i++)
        {
            s[i][n+1]=n;
            for(j=n;j>i;j--)
            {
                for(k=s[i-1][j];k<=s[i][j+1];k++)
                {
                    ret=dp[i-1][k]+w[k+1][j];
                    if(ret<dp[i][j])
                    {
                        dp[i][j]=ret;
                        s[i][j]=k;
                    }
                }
            }
        }
        printf("%I64d\n",dp[m][n]);
    }
}





评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值