Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive integers not larger than n. We'll denote asn the length of permutation p1, p2, ..., pn.
Your task is to find such permutation p of length n, that the group of numbers |p1 - p2|, |p2 - p3|, ..., |pn - 1 - pn| has exactly k distinct elements.
The single line of the input contains two space-separated positive integers n, k (1 ≤ k < n ≤ 105).
Print n integers forming the permutation. If there are multiple answers, print any of them.
3 2
1 3 2
3 1
1 2 3
5 2
1 3 2 4 5
By |x| we denote the absolute value of number x.
题意:排列n个数,使得相邻两个数的差一共有k种。
思路:我们不难想出最多有n-1种差,假设n是10的话,那么就是1、10、2、9、3、8、4、7、5、6这么排,减少k的话,只需要让后面的按顺序使得差为1即可。
AC代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
int main()
{
int T,t,n,m,i,j,k,l,r;
scanf("%d%d",&n,&k);
l=1;r=n;
for(i=1;i<=k;i++)
{
if(i&1)
{
printf("%d ",l);
l++;
}
else
{
printf("%d ",r);
r--;
}
}
if(!(i&1))
for(i=l;i<=r;i++)
printf("%d ",i);
else
for(i=r;i>=l;i--)
printf("%d ",i);
printf("\n");
}

本文介绍了一种算法,用于生成长度为n的排列,使相邻元素差值恰好包含k种不同的数值。通过示例说明了如何实现这一目标,并提供了一份AC代码。
2571

被折叠的 条评论
为什么被折叠?



