Optimal Array Multiplication Sequence - UVa 348 dp

本文探讨了在矩阵乘法中如何通过优化计算序列来减少乘法操作的数量,包括两个矩阵相乘的基本原理,以及如何在多矩阵相乘时选择最佳顺序以减少计算量。通过动态规划方法解决此问题,并提供了求解过程的详细步骤和示例。

Optimal Array Multiplication Sequence

Given two arrays A and B, we can determine the array C = A B using the standard definition of matrix multiplication:

The number of columns in the A array must be the same as the number of rows in the B array. Notationally, let's say that rows(A) and columns(A) are the number of rows and columns, respectively, in the A array. The number of individual multiplications required to compute the entire C array (which will have the same number of rows as A and the same number of columns as B) is then rows(Acolumns(Bcolumns(A). For example, if Ais a tex2html_wrap_inline67 array, and B is a tex2html_wrap_inline71 array, it will take tex2html_wrap_inline73 , or 3000 multiplications to compute the C array.

To perform multiplication of more than two arrays we have a choice of how to proceed. For example, if XY, and Z are arrays, then to compute X Y Z we could either compute (X YZ or X (Y Z). Suppose X is a tex2html_wrap_inline103array, Y is a tex2html_wrap_inline67 array, and Z is a tex2html_wrap_inline111 array. Let's look at the number of multiplications required to compute the product using the two different sequences:

(X YZ

  • tex2html_wrap_inline119 multiplications to determine the product (X Y), a tex2html_wrap_inline123 array.
  • Then tex2html_wrap_inline125 multiplications to determine the final result.
  • Total multiplications: 4500.

X (Y Z)

  • tex2html_wrap_inline133 multiplications to determine the product (Y Z), a tex2html_wrap_inline139 array.
  • Then tex2html_wrap_inline141 multiplications to determine the final result.
  • Total multiplications: 8750.

Clearly we'll be able to compute (X YZ using fewer individual multiplications.

Given the size of each array in a sequence of arrays to be multiplied, you are to determine an optimal computational sequence. Optimality, for this problem, is relative to the number of individual multiplications required.

Input

For each array in the multiple sequences of arrays to be multiplied you will be given only the dimensions of the array. Each sequence will consist of an integer N which indicates the number of arrays to be multiplied, and then N pairs of integers, each pair giving the number of rows and columns in an array; the order in which the dimensions are given is the same as the order in which the arrays are to be multiplied. A value of zero for N indicates the end of the input. N will be no larger than 10.

Output

Assume the arrays are named tex2html_wrap_inline157 . Your output for each input case is to be a line containing a parenthesized expression clearly indicating the order in which the arrays are to be multiplied. Prefix the output for each case with the case number (they are sequentially numbered, starting with 1). Your output should strongly resemble that shown in the samples shown below. If, by chance, there are multiple correct sequences, any of these will be accepted as a valid answer.

Sample Input

3
1 5
5 20
20 1
3
5 10
10 20
20 35
6
30 35
35 15
15 5
5 10
10 20
20 25
0

Sample Output

Case 1: (A1 x (A2 x A3))
Case 2: ((A1 x A2) x A3)
Case 3: ((A1 x (A2 x A3)) x ((A4 x A5) x A6))

题意:矩阵相乘的时候会做一些运算,问怎么运算能使运算次数最少。

思路:dp[i][j]表示第i个到第j个相乘的最少次数,然后就递推。

AC代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
struct node
{ int n,m;
}mat[15];
int n;
int dp[15][15];
void dfs(int l,int r)
{ int i,j;
  if(l==r)
  { printf("A%d",l);
    return;
  }
  if(l+1==r)
  { printf("(A%d x A%d)",l,r);
    return;
  }
  for(i=l;i<r;i++)
   if(dp[l][i]+dp[i+1][r]+mat[l].n*mat[i].m*mat[r].m==dp[l][r])
    break;
  printf("(");
  dfs(l,i);
  printf(" x ");
  dfs(i+1,r);
  printf(")");
}
int main()
{ int t=0,i,j,k;
  while(~scanf("%d",&n) && n)
  { for(i=1;i<=n;i++)
    { scanf("%d%d",&mat[i].n,&mat[i].m);
      dp[i][i]=0;
    }
    for(i=n;i>=1;i--)
     for(j=i+1;j<=n;j++)
     { dp[i][j]=1000000000;
       for(k=i;k<j;k++)
       dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+mat[i].n*mat[k].m*mat[j].m);
     }
    printf("Case %d: ",++t);
    dfs(1,n);
    printf("\n");
  }
}



在充满仪式感的生活里,一款能传递心意的小工具总能带来意外惊喜。这款基于Java开发的满屏飘字弹幕工具,正是为热爱生活、乐于分享的你而来——它以简洁优雅的视觉效果,将治愈系文字化作灵动弹幕,在屏幕上缓缓流淌,既可以作为送给心仪之人的浪漫彩蛋,也能成为日常自娱自乐、舒缓心情的小确幸。 作为程序员献给crush的心意之作,工具的设计藏满了细节巧思。开发者基于Swing框架构建图形界面,实现了无边框全屏显示效果,搭配毛玻璃质感的弹幕窗口与圆润边角设计,让文字呈现既柔和又不突兀。弹幕内容精选了30条治愈系文案,从“秋天的风很温柔”到“你值得所有温柔”,涵盖生活感悟、自我关怀、浪漫告白等多个维度,每一条都能传递温暖力量;同时支持自定义修改文案库,你可以替换成专属情话、纪念文字或趣味梗,让弹幕更具个性化。 在视觉体验上,工具采用柔和色调生成算法,每一条弹幕都拥有独特的清新配色,搭配半透明渐变效果与平滑的移动动画,既不会遮挡屏幕内容,又能营造出灵动治愈的氛围。开发者还优化了弹幕的生成逻辑,支持自定义窗口大小、移动速度、生成间隔等参数,最多可同时显示60条弹幕,且不会造成电脑卡顿;按下任意按键即可快速关闭程序,操作便捷无负担。 对于Java学习者而言,这款工具更是一份优质的实战参考。源码完整展示了Swing图形界面开发、定时器调度、动画绘制、颜色算法等核心技术,注释清晰、结构简洁,哪怕是初学者也能轻松理解。开发者在AI辅助的基础上,反复调试优化细节,解决了透明度控制、弹幕碰撞、资源占用等多个问题,这份“踩坑实录”也为同类项目开发提供了宝贵经验。 无论是想给喜欢的人制造浪漫惊喜,用满屏文字传递心意;还是想在工作间隙用治愈文案舒缓压力,或是作为Java学习的实战案例参考,这款满屏飘字弹幕工具都能满足你的需求。它没有复杂的操作流程,无需额外配置环境,下载即可运行,用最纯粹的设计传递最真挚的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值