题目:
Given a string S and a string T, count the number of distinct subsequences of T in S.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, “ACE” is a subsequence of “ABCDE” while “AEC” is not).
Here is an example:
S = “rabbbit”, T = “rabbit”
Return 3.
题意:
给定一个字符串S,和一个字符串T,找出S中所有的子序列,子序列与T字符串相同。
思路:
我们采用动态规划完成,参见下面的状态转移方程,其中DP数组的第一维表示取S的前i个字符,DP数组的第二维取T得前j个字符串,DP[i][j]代表由S的前i个字符串转换为T的前j个有多少种子串:
- DP[i][0] = 1.S的前i个字符串中都包含一个”“子串。
- DP[i][j] = DP[i-1][j]。可以不考虑第i+1个字符,只考虑前i-1到j个T的转换。
- DP[i][j] += DP[i-1][j-1]. if (S[i] == T[j])。当S的第i+1个字符与T的第j-1个字符相同的时候,可以考虑S的前i个字符到T的前j个字符的转变个数。
以上
代码如下:
class Solution {
public:
int numDistinct(string s, string t) {
if(s.empty() || t.empty())return 0;
else if(s.length() < t.length())return 0;
int lenS = s.length();
int lenT = t.length();
vector<vector<int>> DP(lenS + 1, vector<int>(lenT + 1, 0));
for(int i = 0; i < lenS + 1; i++)
DP[i][0] = 1;
for(int i = 1; i <= lenS; i++)
for(int j = 1; j <= lenT; j++) {
DP[i][j] = DP[i-1][j];
if(s[i - 1] == t[j - 1])DP[i][j] += DP[i-1][j-1];
}
return DP[lenS][lenT];
}
};