前言
最近博主在做的一个项目中涉及到了中文NER任务。所以调研了近些年来中文NER上有什么刷榜的模型。发现了两个宝藏模型:FLAT和LEBERT。本篇文章将简单介绍下这两个模型各自的思想,并针对LEBERT的GitHub代码做一些实验上的分析。最后,还会提出一些NER数据增强方法。
原文链接:中文NER—项目中的SOTA应用
一、FLAT(ACL2020)
1、论文标题:《 FLAT: Chinese NER Using Flat-Lattice Transformer 》
2、论文链接:https://arxiv.org/pdf/2004.11795.pdf
3、Github:https://github.com/LeeSureman/Flat-Lattice-Transformer
4、方法
FLAT结构如下图Figure1(c)所示,每个字符和每个潜在的word使用head和tail两个索引去表示token在输入序列中的绝对位置,head表示开始索引,tail表示结束索引,对于每个字符,head和tail是一样的;每个word是不一样的,比如word “重庆”,head为1,tail为2,说明序列中第一个字符和第二个字符为“重庆”。
5、腾讯音乐文本NER
之前听分享报告,腾讯QQ音乐在做音乐文本NER时,采用的就是FLAT模型。其NER优化方案就是:设计更好的领域内知识融入模型。而该项目是2020年做的,当年领域内知识融入