1.(重要)显卡是否支持CUDA
链接查看电脑的显卡:CUDA GPUs | NVIDIA Developer
查看显卡驱动版本:
(1)NVIDIA控制面板
(2)左下方系统信息查看
2.CUDA与显卡驱动配置
链接:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
cuda下载:https://developer.nvidia.com/cuda-toolkit-archive
cudnn下载:https://developer.nvidia.com/rdp/form/cudnn-download-survey
CUDA Toolkit | Toolkit Driver Version | Minimum Required Driver Version* | ||
---|---|---|---|---|
Linux x86_64 Driver Version | Windows x86_64 Driver Version | Linux x86_64 Driver Version | Windows x86_64 Driver Version | |
CUDA 11.3.0 GA | >=465.19.01 | >=465.89 | >= 450.80.02 | >= 456.38 |
CUDA 11.2.2 Update 2 | >=460.32.03 | >=461.33 | >= 450.80.02 | >= 456.38 |
CUDA 11.2.1 Update 1 | >=460.32.03 | >=461.09 | >= 450.80.02 | >= 456.38 |
CUDA 11.2.0 GA | >=460.27.03 | >=460.82 | >= 450.80.02 | >= 456.38 |
CUDA 11.1.1 Update 1 | >=455.32 | >=456.81 | >= 450.80.02 | >= 456.38 |
CUDA 11.1 GA | >=455.23 | >=456.38 | >= 450.80.02 | >= 456.38 |
CUDA 11.0.3 Update 1 | >= 450.51.06 | >= 451.82 | >= 450.51.06 | >= 451.82 |
CUDA 11.0.2 GA | >= 450.51.05 | >= 451.48 | >= 450.51.06 | >= 451.48 |
CUDA 11.0.1 RC | >= 450.36.06 | >= 451.22 | >= 450.51.06 | >= 451.22 |
CUDA 10.2.89 | >= 440.33 | >= 441.22 | >= 440.33 | >= 441.22 |
CUDA 10.1 (10.1.105 general release, and updates) | >= 418.39 | >= 418.96 | >= 418.39 | >= 418.96 |
CUDA 10.0.130 | >= 410.48 | >= 411.31 | >= 410.48 | >= 411.31 |
CUDA 9.2 (9.2.148 Update 1) | >= 396.37 | >= 398.26 | >= 396.37 | >= 398.26 |
CUDA 9.2 (9.2.88) | >= 396.26 | >= 397.44 | >= 396.26 | >= 397.44 |
CUDA 9.1 (9.1.85) | >= 390.46 | >= 391.29 | >= 390.46 | >= 391.29 |
CUDA 9.0 (9.0.76) | >= 384.81 | >= 385.54 | >= 384.81 | >= 385.54 |
CUDA 8.0 (8.0.61 GA2) | >= 375.26 | >= 376.51 | >= 375.26 | >= 376.51 |
CUDA 8.0 (8.0.44) | >= 367.48 | >= 369.30 | >= 367.48 | >= 369.30 |
CUDA 7.5 (7.5.16) | >= 352.31 | >= 353.66 | >= 352.31 | >= 353.66 |
CUDA 7.0 (7.0.28) | >= 346.46 | >= 347.62 | >= 346.46 | >= 347.62 |
3.CUDA与tensorflow配置
链接:https://tensorflow.google.cn/install/source_windows
GPU:
CPU:
4. CUDA与pytorch配置
链接:https://pytorch.org/get-started/previous-versions/
https://pytorch.org/get-started/locally/
自个对应cpu、cuda8.0、cuda9.0、cuda9.2、cuda10.0和cuda10.1、cuda10.2安装对应文件。
4. 后补
以下命令:
conda search cudatoolkit:寻找可安装的cudatoolkit