Explain详解与索引最佳实践

Explain工具介绍

使用EXPLAIN关键字可以模拟优化器执行SQL语句,分析你的查询语句或是结构的性能瓶颈

在 select 语句之前增加 explain 关键字,MySQL 会在查询上设置一个标记,执行查询会返回执行计划的信息,而不是执行这条SQL

注意:如果 from 中包含子查询,仍会执行该子查询,将结果放入临时表中

Explain分析示例

1示例表:
2DROP  TABLE  IF  EXISTS  `actor`;
3CREATE TABLE `actor` (
4`id` int(11) NOT NULL,
5`name` varchar(45) DEFAULT NULL,
6`update_time`  datetime  DEFAULT  NULL,
7PRIMARY  KEY  (`id`)
8)  ENGINE=InnoDB  DEFAULT  CHARSET=utf8;
9
10  INSERT  INTO  `actor`  (`id`,  `name`,  `update_time`)  VALUES  (1,'a','2017‐12‐2 2  15:27:18'),  (2,'b','2017‐12‐22  15:27:18'),  (3,'c','2017‐12‐22  15:27:18');
11
12DROP  TABLE  IF  EXISTS  `film`;
13CREATE  TABLE  `film`  (
14`id`  int(11)  NOT  NULL  AUTO_INCREMENT,
15`name` varchar(10) DEFAULT NULL,
16PRIMARY  KEY  (`id`),
17KEY  `idx_name`  (`name`)
18)  ENGINE=InnoDB  DEFAULT  CHARSET=utf8;
19
20  INSERT  INTO  `film`  (`id`,  `name`)  VALUES  (3,'film0'),(1,'film1'),(2,'film 2');
21
22DROP  TABLE  IF  EXISTS  `film_actor`;
23CREATE  TABLE  `film_actor`  (
24`id` int(11) NOT NULL,
25`film_id`  int(11)  NOT  NULL,
26`actor_id` int(11) NOT NULL,
27`remark`  varchar(255)  DEFAULT  NULL,
28PRIMARY  KEY  (`id`),
29KEY  `idx_film_actor_id`  (`film_id`,`actor_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

INSERT INTO `film_actor` (`id`, `film_id`, `actor_id`) VALUES (1,1,1), (2,1,2),(3,2,1);

img

1 mysql> explain select * from actor;

在查询中的每个表会输出一行,如果有两个表通过 join 连接查询,那么会输出两行

explain 两个变种

  1. explain extended:会在 explain 的基础上额外提供一些查询优化的信息。紧随其后通过 show warnings 命令可以得到优化后的查询语句,从而看出优化器优化了什么。额外还有filtered 列,是一个半分比的值,rows * filtered/100 可以估算出将要和 explain 中前一个表进行连接的行数(前一个表指 explain 中的id值比当前表id值小的表)。

img
img
mysql> explain extended select * from film where id = 1; mysql> show warnings;

  1. explain partitions:相比 explain 多了个 partitions 字段,如果查询是基于分区表的话,会显示查询将访问的分区。

explain中的列

接下来我们将展示 explain 中每个列的信息。

1. id列

id列的编号是 select 的序列号,有几个 select 就有几个id,并且id的顺序是按 select 出现的顺序增长的。

id列越大执行优先级越高,id相同则从上往下执行,id为NULL最后执行。

1. select_type列

select_type 表示对应行是简单还是复杂的查询。1)simple:简单查询。查询不包含子查询和union mysql> explain select * from film where id = 2;

img

  1. primary:复杂查询中最外层的 select
  2. subquery:包含在 select 中的子查询(不在 from 子句中)
  3. derived:包含在 from 子句中的子查询。MySQL会将结果存放在一个临时表中,也称为派生表(derived的英文含义)

用这个例子来了解 primary、subquery 和 derived 类型

mysql> set session optimizer_switch=‘derived_merge=off’; #关闭mysql5.7新特性对衍生表的合并优化

mysql> explain select (select 1 from actor where id = 1) from (select * from film where id = 1) der;
img
mysql> set session optimizer_switch=‘derived_merge=on’; #还原默认配置5)union:在 union 中的第二个和随后的 select
mysql> explain select 1 union all select 1;
img

2. table列

这一列表示 explain 的一行正在访问哪个表。

当 from 子句中有子查询时,table列是 格式,表示当前查询依赖 id=N 的查询,于是先执行 id=N 的查询。

当有 union 时,UNION RESULT 的 table 列的值为<union1,2>,1和2表示参与 union 的select 行id。

3.type列

这一列表示关联类型或访问类型,即MySQL决定如何查找表中的行,查找数据行记录的大概 范围。
依次从最优到最差分别为:system > const > eq_ref > ref > range > index > ALL
一般来说,得保证查询达到range级别,最好达到ref
NULL:mysql能够在优化阶段分解查询语句,在执行阶段用不着再访问表或索引。例如:在 索引列中选取最小值,可以单独查找索引来完成,不需要在执行时访问表

mysql> explain select min(id) from film;
img
const, system:mysql能对查询的某部分进行优化并将其转化成一个常量(可以看show warnings 的结果)。用于 primary key 或 unique key 的所有列与常数比较时,所以表最多有一个匹配行,读取1次,速度比较快。system是const的特例,表里只有一条元组匹配时为system

mysql> explain extended select * from (select * from film where id = 1) tmp;
img
img
mysql> show warnings;

eq_ref:primary key 或 unique key 索引的所有部分被连接使用 ,最多只会返回一条符合条件的记录。这可能是在 const 之外最好的联接类型了,简单的 select 查询不会出现这种type。

mysql> explain select * from film_actor left join film on film_actor.film_id = film.id;
img
ref:相比 eq_ref,不使用唯一索引,而是使用普通索引或者唯一性索引的部分前缀,索引要和某个值相比较,可能会找到多个符合条件的行。

  1. 简单 select 查询,name是普通索引(非唯一索引)
  2. mysql> explain select * from film where name = ‘film1’;

img
关联表查询,idx_film_actor_id是film_id和actor_id的联合索引,这里使用到了film_actor 的左边前缀film_id部分。
img
mysql> explain select film_id from film left join film_actor on film.id = film_actor.film_id;

range:范围扫描通常出现在 in(), between ,> ,<, >= 等操作中。使用一个索引来检索给定范围的行。

mysql> explain select * from actor where id > 1;
img
index:扫描全表索引,这通常比ALL快一些。mysql> explain select * from film;
img
ALL:即全表扫描,意味着mysql需要从头到尾去查找所需要的行。通常情况下这需要增加索 引来进行优化了

mysql> explain select * from actor;
img

4. possible_keys列

这一列显示查询可能使用哪些索引来查找。

explain 时可能出现 possible_keys 有列,而 key 显示 NULL 的情况,这种情况是因为表中数据不多,mysql认为索引对此查询帮助不大,选择了全表查询。

如果该列是NULL,则没有相关的索引。在这种情况下,可以通过检查 where 子句看是否可以创造一个适当的索引来提高查询性能,然后用 explain 查看效果。

5.key列

这一列显示mysql实际采用哪个索引来优化对该表的访问。

如果没有使用索引,则该列是 NULL。如果想强制mysql使用或忽视possible_keys列中的索引,在查询中使用 force index、ignore index。

6. key_len列

这一列显示了mysql在索引里使用的字节数,通过这个值可以算出具体使用了索引中的哪些 列。

举例来说,film_actor的联合索引 idx_film_actor_id 由 film_id 和 actor_id 两个int列组成, 并且每个int是4字节。通过结果中的key_len=4可推断出查询使用了第一个列:film_id列来执 行索引查找。

mysql> explain select * from film_actor where film_id = 2;

img
key_len计算规则如下:

字符串

char(n):n字节长度

varchar(n):2字节存储字符串长度,如果是utf-8,则长度 3n+2

数值类型

tinyint:1字节smallint:2字节int:4字节bigint:8字节

时间类型

date:3字节timestamp:4字节datetime:8字节

如果字段允许为 NULL,需要1字节记录是否为 NULL

索引最大长度是768字节,当字符串过长时,mysql会做一个类似左前缀索引的处理,将前半 部分的字符提取出来做索引。

7.ref列

这一列显示了在key列记录的索引中,表查找值所用到的列或常量,常见的有:const(常 量),字段名(例:film.id)

8.rows列

这一列是mysql估计要读取并检测的行数,注意这个不是结果集里的行数。

9.Extra列

这一列展示的是额外信息。常见的重要值如下: 1)Using index:使用覆盖索引
mysql> explain select film_id from film_actor where film_id = 1;
img

  1. Using where:使用 where 语句来处理结果,查询的列未被索引覆盖mysql> explain select * from actor where name = ‘a’;
  2. Using index condition:查询的列不完全被索引覆盖,where条件中是一个前导列的范围;

mysql> explain select * from film_actor where film_id > 1;
img

  1. Using temporary:mysql需要创建一张临时表来处理查询。出现这种情况一般是要进行优化的,首先是想到用索引来优化。
  2. actor.name没有索引,此时创建了张临时表来distinct mysql> explain select distinct name from actor;
    img
  3. film.name建立了idx_name索引,此时查询时extra是using index,没有用临时表mysql> explain select distinct name from film;
  4. Using filesort:将用外部排序而不是索引排序,数据较小时从内存排序,否则需要在磁盘完成排序。这种情况下一般也是要考虑使用索引来优化的。
  5. actor.name未创建索引,会浏览actor整个表,保存排序关键字name和对应的id,然后排 序name并检索行记录

mysql> explain select * from actor order by name;
img

  1. film.name建立了idx_name索引,此时查询时extra是using index mysql> explain select * from film order by name;
    img
  2. Select tables optimized away:使用某些聚合函数(比如 max、min)来访问存在索引的某个字段是

mysql> explain select min(id) from film;
img

索引最佳实践

 示例表:
 CREATE TABLE `employees` (
 `id` int(11) NOT NULL AUTO_INCREMENT,
 `name` varchar(24) NOT NULL DEFAULT '' COMMENT '姓名',
 `age` int(11) NOT NULL DEFAULT '0' COMMENT '年龄',
 `position` varchar(20) NOT NULL DEFAULT '' COMMENT '职位',
 `hire_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '入职时间',
 PRIMARY KEY (`id`),
 KEY `idx_name_age_position` (`name`,`age`,`position`) USING BTREE) ENGINE=InnoDB AUTO_INCREMENT=4 DEFAULT CHARSET=utf8 COMMENT='员工记录表';


INSERT INTO employees(name,age,position,hire_time) VALUES('LiLei',22,'mana ger',NOW());
INSERT INTO employees(name,age,position,hire_time) VALUES('HanMeimei', 23,'dev',NOW());
INSERT INTO employees(name,age,position,hire_time) VALUES('Lucy',23,'dev',NOW());

1.全值匹配
EXPLAIN SELECT * FROM employees WHERE name= ‘LiLei’;

EXPLAIN SELECT * FROM employees WHERE name= ‘LiLei’ AND age = 22;

EXPLAIN SELECT * FROM employees WHERE name= ‘LiLei’ AND age = 22 AND position =‘manager’;

2.最左前缀法则
如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引 中的列。
EXPLAIN SELECT * FROM employees WHERE age = 22 AND position =‘manager’; EXPLAIN SELECT * FROM employees WHERE position = ‘manager’;
EXPLAIN SELECT * FROM employees WHERE name = ‘LiLei’;

3.不在索引列上做任何操作(计算、函数、(自动or手动)类型转换),会导致索引失效而转 向全表扫描
EXPLAIN SELECT * FROM employees WHERE name = ‘LiLei’; EXPLAIN SELECT * FROM employees WHERE left(name,3) = ‘LiLei’;

给hire_time增加一个普通索引:

EXPLAIN select * from employees where date(hire_time) =‘2018-09-30’;

转化为日期范围查询,会走索引:
EXPLAIN select * from employees where hire_time >=‘2018-09-30 00:00:00’ and hire_time <=‘2018-09-30 23:59:59’;

还原最初索引状态

4.存储引擎不能使用索引中范围条件右边的列
EXPLAIN SELECT * FROM employees WHERE name= ‘LiLei’ AND age = 22 AND position =‘manager’;
EXPLAIN SELECT * FROM employees WHERE name= ‘LiLei’ AND age > 22 AND position =‘manager’;

5.尽量使用覆盖索引(只访问索引的查询(索引列包含查询列)),减少select *语句EXPLAIN SELECT name,age FROM employees WHERE name= ‘LiLei’ AND age = 23 AND position =‘manager’;
EXPLAIN SELECT * FROM employees WHERE name= ‘LiLei’ AND age = 23 AND position =‘manager’;

6.mysql在使用不等于(!=或者<>)的时候无法使用索引会导致全表扫描EXPLAIN SELECT * FROM employees WHERE name != ‘LiLei’;

7.is null,is not null 也无法使用索引

EXPLAIN SELECT * FROM employees WHERE name is null

8.like以通配符开头(’$abc…’)mysql索引失效会变成全表扫描操作EXPLAIN SELECT * FROM employees WHERE name like ‘%Lei’

EXPLAIN SELECT * FROM employees WHERE name like ‘Lei%’

问题:解决like’%字符串%'索引不被使用的方法? a)使用覆盖索引,查询字段必须是建立覆盖索引字段
EXPLAIN SELECT name,age,position FROM employees WHERE name like ‘%Lei%’; b)如果不能使用覆盖索引则可能需要借助搜索引擎
9.字符串不加单引号索引失效
EXPLAIN SELECT * FROM employees WHERE name = ‘1000’; EXPLAIN SELECT * FROM employees WHERE name = 1000;

10.少用or或in,用它查询时,mysql不一定使用索引,mysql内部优化器会根据检索比例、 表大小等多个因素整体评估是否使用索引,详见范围查询优化
EXPLAIN SELECT * FROM employees WHERE name = ‘LiLei’ or name = ‘HanMeimei’;

11.范围查询优化
给年龄添加单值索引

explain select * from employees where age >=1 and age <=2000;
没走索引原因:mysql内部优化器会根据检索比例、表大小等多个因素整体评估是否使用索 引。比如这个例子,可能是由于单次数据量查询过大导致优化器最终选择不走索引
优化方法:可以讲大的范围拆分成多个小范围
explain select * from employees where age >=1 and age <=1000;

explain select * from employees where age >=1001 and age <=2000; 还原最初索引状态

索引使用总结:

img

索引使用总结:

like KK%相当于=常量,%KK和%KK% 相当于范围

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值