| ||
Accepted : 116 | Submit : 288 | |
Time Limit : 1000 MS | Memory Limit : 65536 KB |
Problem DescriptionRecently, Mr. Xie learn the concept of happy number. A happy number is a number contain all digit 7 or only 1 digit other than 7. For example, 777 is a happy number because 777 contail all digit 7, 7177 and 87777 both happy number because only 1 digit other than 7. Whereas 887,799 9807,12345, all of them are not happy number. Now Mr. xie want to know for a given integer n, how many number among [1,n] are happy numbers, but counting them one by one is slow, can you help him? InputFirst line an integer t indicate there are t testcases(1≤t≤100). Then t lines follow, each line an integer n(1≤n≤106, n don't have leading zero). OutputOutput case number first, then the answer. Sample Input5 1 7 17 20 30 Sample OutputCase 1: 1 Case 2: 7 Case 3: 10 Case 4: 10 Case 5: 11 |
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
using namespace std;
int main()
{
int n,i,t,k;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
int sum=9;
scanf("%d",&t);
if(t<10)
printf("Case %d :%d\n",i,t);
else
{
for(k=10;k<=t;k++)
{
int k1=k;
int p=0;10
int t1 = 0;
int x;
int w=0;
while (k1)
{
x = k1%10;
k1=k1/10;
t1++;
if(x==7)
p++;
else w++;
if(w>=2)
break;
}
if(p==t1||p==t1-1)
sum++;
}
printf("Case %d: %d\n",i,sum);
}
}
return 0;
}