中心极限定理是概率论中的一组定理。中心极限定理说明,在适当的条件下,大量相互独立随机变量的均值经适当标准化后依分布收敛于正态分布。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从正态分布的条件。
独立同分布的中心极限定理


该定理说明,当n很大时,随机变量
近似地服从标准正态分布N(0,1)。因此,当n很大时,
近似地服从正态分布N(nμ,nσ
2).该定理是中心极限定理最简单又最常用的一种形式,在实际工作中,只要n足够大,便可以把独立同分布的随机变量之和当作正态变量。这种方法在数理统计中用得很普遍,当处理大样本时,它是重要工具。
[2]


棣莫佛-拉普拉斯定理
设随机变量X(n=1,2,...,)服从参数为n,p(0<p<1)的二项分布,则对于任意有限区间(a,b)有

不同分布的中心极限定理
设随机变量X
1,X
2,......X
n,......独立同分布,它们的概率密度分别为
,并有E(X
k)=μk,
,(k=1,2,...),令:




若对任意正数τ,有
其他举例
1.某炮兵阵地对敌人的防御地段进行100次射击,每次射击中炮弹的命中数是一个随机变量,其期望为2,方差为1.69,求在100次射击中有180颗到220颗炮弹命中目标的概率。
解:设Xk表示第k次射击中的炮弹数,则E(X
i)=2,D(X
i)=1.69,且S
100=X
1+X
2+…+X
100,应用中心极限定理,
近似服从N(0,1),由题意
,所以:




2.一个复杂系统由100个相互独立的元件组成,在系统运行时每个元件损坏的概率为0.1,为使系统正常工作,至少必须有85个元件工作,求系统的可靠度(正常工作的概率)。
解:以X表示100个元件中正常工作的元件数,则X~B(100,0.9),由二项分布的正态近似,

