题意:给出一棵树及树上点权值,每次可更改某点权值 或者 查询某条路径上点权出现次数为奇数的那个点权是多少。
因为每次一条路径上出现奇数次点权最多只有一个,而点权出现次数为偶数的时候是可以通过异或消去的,那么直接套树剖+线段树维护就行了。
这里有个坑点,即点权为0,那么出现0 0 0的时候异或值为0,但是0这个点权还是出现了三次。应该输出0,解决办法可以在线段树上多维护一个0的个数,或者点权+1,这样就保证所以得点权非0,记得在更改的时候也要使被更改的点权+1
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#define ls rt << 1
#define rs rt << 1 | 1
#define pi acos(-1.0)
#define eps 1e-8
#define asd puts("sdfsdfsdfsdfsdfsdf");
typedef __int64 ll;
typedef pair<int, int> pll;
const int N = 100010;
struct node{
int v, nxt;
}e[N<<1];
int head[N];
int pos[N];
int pre[N];
int son[N];
int sz[N];
int top[N];
int dep[N];
int n, q, cnt, ID;
int val[N];
void init()
{
memset( head, -1, sizeof( head ) );
ID = cnt = 0;
dep[1] = sz[0] = 0;
}
void add( int u, int v )
{
e[cnt].v = v;
e[cnt].nxt = head[u];
head[u] = cnt++;
e[cnt].v = u;
e[cnt].nxt = head[v];
head[v] = cnt++;
}
void dfs( int u )
{
sz[u] = 1;
son[u] = 0;
for( int i = head[u]; ~i; i = e[i].nxt ) {
int v = e[i].v;
if( v == pre[u] )
continue;
dep[v] = dep[u] + 1;
pre[v] = u;
dfs( v );
sz[u] += sz[v];
if( sz[v] > sz[son[u]] )
son[u] = v;
}
}
void rebuild( int u, int anc )
{
pos[u] = ++ID;
top[u] = anc;
if( son[u] )
rebuild( son[u], anc );
for( int i = head[u]; ~i; i = e[i].nxt ) {
int v = e[i].v;
if( v != pre[u] && v != son[u] )
rebuild( v, v );
}
}
struct seg{
int l, r, x;
}tr[N<<2];
void pushup( int rt )
{
tr[rt].x = tr[ls].x ^ tr[rs].x;
}
void build( int l, int r, int rt )
{
tr[rt].l = l;
tr[rt].r = r;
if( l == r ) {
tr[rt].x = val[l];
return;
}
int mid = ( l + r ) >> 1;
build( lson );
build( rson );
pushup( rt );
}
void update( int pos, int xx, int rt )
{
if( tr[rt].l == tr[rt].r && tr[rt].l == pos ) {
tr[rt].x = xx;
return;
}
int mid = ( tr[rt].l + tr[rt].r ) >> 1;
if( pos <= mid )
update( pos, xx, ls );
else
update( pos, xx, rs );
pushup( rt );
}
int query( int l, int r, int rt )
{
if( l <= tr[rt].l && tr[rt].r <= r ) {
return tr[rt].x;
}
int mid = ( tr[rt].l + tr[rt].r ) >> 1;
if( r <= mid )
return query( l, r, ls );
else if( l > mid )
return query( l, r, rs );
else
return query( lson ) ^ query( rson );
}
int query_res( int x, int y )
{
int cur = 0;
while( top[x] != top[y] ) {
int f1 = top[x], f2 = top[y];
if( dep[f1] > dep[f2] ) {
cur ^= query( pos[f1], pos[x], 1 );
x = pre[f1];
}
else {
cur ^= query( pos[f2], pos[y], 1 );
y = pre[f2];
}
}
if( dep[x] < dep[y] )
return cur ^ query( pos[x], pos[y], 1 );
else
return cur ^ query( pos[y], pos[x], 1 );
}
int main()
{
int tot;
scanf("%d", &tot);
while( tot-- ) {
scanf("%d%d", &n, &q);
init();
int u, v, op;
for( int i = 1; i < n; ++i ) {
scanf("%d%d", &u, &v);
add( u, v );
}
dfs( 1 );
rebuild( 1, 1 );
for( int i = 1; i <= n; ++i ) {
int x;
scanf("%d", &x);
++x;
val[pos[i]] = x;
}
build( 1, n, 1 );
while( q-- ) {
scanf("%d%d%d", &op, &u, &v);
if( op == 0 )
update( pos[u], v+1, 1 );
else {
int f = query_res( u, v );
if( f )
printf("%d\n", f-1);
else
printf("-1\n");
}
}
}
return 0;
}