题意:n*m的矩阵有一些蜥蜴,每只蜥蜴最远能跳d(0~3)个单位,而每次起跳蜥蜴的站台会少一格血,最开始的时候蜥蜴保证站在有站台(站台初始血量为0~3)的地方。问最多有多少只蜥蜴能跳出矩阵。
建超源超汇,超源连有蜥蜴的地方,容量为1。站台之间相互可达的连边,容量为inf,跳出矩阵的点与超汇连边,容量也为inf。这时候将所有站台的点拆成入点和出点,入点到出点连边,容量就是这个站台的血量(理解成能通过这个站台的最大容量),那么站台之间连inf容量的边就很好理解了:站台之间可以无限次跳,但是某站台被经过的次数只能是它的血量。最后跑一发最大流即可。注意输出时候的单数复数
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <string>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
#define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
#define ls rt << 1
#define rs rt << 1 | 1
#define pi acos(-1.0)
#define eps 1e-8
#define asd puts("sdfsdfsdfsdfsdfsdf");
typedef long long ll;
typedef pair<ll, int> pl;
const int inf = 0x3f3f3f3f;
const int N = 6400;
const int X = 45;
const int st = 0, ed = (N << 1) - 10;
struct node{
int w, v, nxt;
}e[N<<3];
char a[X][X], b[X][X];
int n, m, cnt, k;
int dep[N<<1];
int gap[N<<1];
int head[N<<1];
int cur[N<<1];
int s[N<<1], top;
int tid[X][X];
queue <int> q;
void init()
{
int cnt = 0;
memset( head, -1, sizeof( head ) );
memset( tid, 0, sizeof( tid ) );
}
void add( int u, int v, int w )
{
e[cnt].w = w;
e[cnt].v = v;
e[cnt].nxt = head[u];
head[u] = cnt++;
e[cnt].w = 0;
e[cnt].v = u;
e[cnt].nxt = head[v];
head[v] = cnt++;
}
int dis( int x, int y, int xx, int yy )
{
return abs( x - xx ) + abs( y - yy );
}
void rev_bfs( )
{
memset( gap, 0, sizeof( gap ) );
memset( dep, -1, sizeof( dep ) );
while( !q.empty() ) q.pop();
q.push( ed );
dep[ed] = 0;
gap[0] = 1;
while( !q.empty() ) {
int u = q.front();
q.pop();
for( int i = head[u]; ~i; i = e[i].nxt ) {
int v = e[i].v;
if( ~dep[v] )
continue;
dep[v] = dep[u] + 1;
gap[dep[u]]++;
q.push( v );
}
}
}
int isap()
{
memcpy( cur, head, sizeof cur );
rev_bfs();
int flow = 0, i, u = st, nv = ed+1;
top = 0;
while( dep[st] < nv ) {
if( u == ed ) {
int tmp, minn = inf;
for( i = 0; i < top; ++i ) {
if( minn > e[s[i]].w ) {
minn = e[s[i]].w;
tmp = i;
}
}
for( i = 0; i < top; ++i ) {
e[s[i]].w -= minn;
e[s[i]^1].w += minn;
}
flow += minn;
top = tmp;
u = e[s[top]^1].v;
}
for( i = cur[u]; ~i; i = e[i].nxt ) {
if( e[i].w > 0 && dep[u] == dep[e[i].v] + 1 ) {
cur[u] = i;
break;
}
}
if( ~i ) {
s[top++] = cur[u];
u = e[i].v;
}
else {
if( 0 == (--gap[dep[u]]) )
break;
int minn = nv;
for( i = head[u]; ~i; i = e[i].nxt ) {
int v = e[i].v;
if( e[i].w > 0 && minn > dep[v] ) {
minn = dep[v];
cur[u] = i;
}
}
dep[u] = minn + 1;
gap[dep[u]]++;
if( u != st ) {
u = e[ s[--top]^1 ].v;
}
}
}
return flow;
}
int main()
{
int tot;
scanf("%d", &tot);
for( int ca = 1; ca <= tot; ca++ ) {
init();
scanf("%d%d", &n, &k);
for( int i = 1; i <= n; ++i )
scanf("%s", a[i]+1);
for( int i = 1; i <= n; ++i )
scanf("%s", b[i]+1);
m = strlen( a[1]+1 );
int p = 0, sum = 0;
for( int i = 1; i <= n; ++i ) {
for( int j = 1; j <= m; ++j ) {
if( a[i][j] >= '1' && a[i][j] <= '9' ) {
tid[i][j] = ++p; // re_id
add( 2*p-1, 2*p, a[i][j] - '0' );
}
if( b[i][j] == 'L' ) {
sum++;
add( st, 2*tid[i][j]-1, 1 );
}
}
}
for( int i = 1; i <= n; ++i ) {
for( int j = 1; j <= m; ++j ) {
if( !tid[i][j] )
continue;
for( int e = i-k; e <= i+k; ++e ) {
for( int r = j-k; r <= j+k; ++r ) {
if( !e || !r || e > n || r > m || ( e == i && r == j ) )
continue;
if( !tid[e][r] || dis( i, j, e, r ) > k )
continue;
add( 2*tid[i][j], 2*tid[e][r]-1, inf );
}
}
if( i - k <= 0 || j - k <= 0 || i+k > n || j+k > m )
add( 2*tid[i][j], ed, inf );
}
}
int ans = sum - isap();
if( ans == 0 )
printf("Case #%d: no lizard was left behind.\n", ca);
else if( ans == 1)
printf("Case #%d: 1 lizard was left behind.\n", ca);
else
printf("Case #%d: %d lizards were left behind.\n", ca, ans );
//printf("%d %d\n", sum, ans);
}
//system("pause");
return 0;
}