caffe(4) 运行实例cifar

使用笔记本电脑配置,6g内存,AMD处理器1.6g主频,CPU模式

1. cifar10实例

cifar10是由60000张32×32的RGB图像组成,用于普适物体识别,共有10类。caffe中的cifar10的demo中,50000张用于训练,10000张用于测试。10类物体分别为:airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck. Alex的论文ImageNet Classification with Deep Convolutional Neural Networks 中改良CNN已经把Cifar-10的错误率降到了11%。

普适物体识别的特点:特征多,噪声,物体比例不一,类别数目多。

首先进入caffe目录,运行下载数据,成功后会在 data/cifar10/文件夹下生成一堆bin文件

sudo sh data/cifar10/get_cifar10.sh

转换数据格式为lmdb:

sudo sh examples/cifar10/create_cifar10.sh

转换成功后,会在 examples/cifar10/文件夹下生成两个文件夹,cifar10_train_lmdb和cifar10_test_lmdb, 里面的文件就是我们需要的文件。

为了节省时间,我们进行快速训练(train_quick),训练分为两个阶段,第一个阶段(迭代4000次)调用配置文件cifar10_quick_solver.prototxt, 学习率(base_lr)为0.001

第二阶段(迭代1000次)调用配置文件cifar10_quick_solver_lr1.prototxt, 学习率(base_lr)为0.0001。 并且修改两个文件为CPU模式

sudo time sh examples/cifar10/train_quick.sh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值