使用一个大语言模型对另一个大语言模型进行“调教”

使用一个大语言模型对另一个大语言模型进行“调教”(通常称为微调或适配),是一种常见的技术手段,用于让目标模型更好地适应特定的任务、领域或风格。以下是基于搜索结果整理的详细步骤和方法:

1.准备工作

安装必要的库

• Transformers:用于加载和训练模型。

• Datasets:用于处理数据集。

• PEFT:用于微调,特别是LoRA(Low-Rank Adaptation)等技术。

• Accelerate:用于优化训练过程。

• ModelScope:用于下载和加载模型(国内用户)。

• SwanLab:用于可视化训练过程。

pip install transformers datasets peft accelerate modelscope swanlab

2.数据准备

下载数据集
使用datasets库下载或加载数据集。如果数据集较大或需要本地存储,可以手动下载并加载。

from datasets import load_dataset

# 如果数据集在 Hugging Face 上
dataset = load_dataset("your_dataset_name", split="train")

# 如果数据集在本地
dataset = load_dataset("json", data_files="path/to/your/dataset.json", split="train")

数据预处理
将数据集转换为适合模型输入的格式。通常需要对文本进行分词,并将标签转换为模型可理解的格式。

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("base_model_name")
MAX_LENGTH = 512  # 根据显存调整

def preprocess_function(examples):
    inputs = tokenizer(examples["text"], truncation=True, max_length=MAX_LENGTH)
    labels = tokenizer(examples["label"], truncation=True, max_length=MAX_LENGTH)
    return {
        "input_ids": inputs["input_ids"],
        "attention_mask": inputs["attention_mask"],
        "labels": labels["input_ids"]
    }

tokenized_dataset = dataset.map(preprocess_function, batched=True)

3.模型准备

下载并加载基础模型
使用transformers库加载基础模型。如果使用国内模型,可以通过ModelScope下载。

from transformers import AutoModelForCausalLM, AutoTokenizer

base_model = "base_model_name"  # 替换为实际模型名称
tokenizer = AutoTokenizer.from_pretrained(base_model)
model = AutoModelForCausalLM.from_pretrained(base_model)

设置量化配置
如果需要在低显存设备上运行,可以对模型进行量化。

from transformers import BitsAndBytesConfig

quant_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_use_double_quant=False,
)
model = AutoModelForCausalLM.from_pretrained(base_model, quantization_config=quant_config)

应用LoRA配置
LoRA 是一种高效的微调方法,适用于大模型。

from peft import LoraConfig, TaskType, get_peft_model

lora_config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    inference_mode=False,
    r=8,  # LoRA 的秩
    lora_alpha=32,
    lora_dropout=0.1
)
model = get_peft_model(model, lora_config)

4.训练模型

设置训练参数
使用transformersTrainingArguments设置训练参数。

from transformers import TrainingArguments

training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=4,
    gradient_accumulation_steps=4,
    learning_rate=2e-4,
    save_steps=500,
    logging_steps=500,
    evaluation_strategy="steps",
    eval_steps=500,
    save_total_limit=2,
    load_best_model_at_end=True,
    metric_for_best_model="accuracy",
    greater_is_better=True,
    save_on_each_node=True,
    bf16=True,  # 如果使用 Ampere 架构以下的显卡,可以使用 fp16
)

创建训练器
使用transformersTrainerSFTTrainer进行训练。

from transformers import Trainer

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset,
    tokenizer=tokenizer,
)
trainer.train()

5.保存和加载模型

保存模型
训练完成后,保存模型和分词器。

model.save_pretrained("path/to/save/model")
tokenizer.save_pretrained("path/to/save/tokenizer")

加载模型
加载保存的模型进行推理。

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("path/to/save/model")
tokenizer = AutoTokenizer.from_pretrained("path/to/save/tokenizer")

# 进行推理
prompt = "Who is Leonardo Da Vinci?"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))

6.使用 LangChain 进行 Prompt 工程
如果需要进一步优化模型的输出,可以使用 LangChain 框架进行 Prompt 工程。通过设计合适的提示词模板和输入输出接口,可以显著提升模型的性能。

from langchain.prompts import PromptTemplate
from langchain.llms import LLM

# 创建提示词模板
template = """你是一个专业的{domain}专家,回答以下问题:
{question}
"""
prompt = PromptTemplate(input_variables=["domain", "question"], template=template)

# 使用模型进行推理
llm = LLM(model=model, tokenizer=tokenizer)
response = llm(prompt.format(domain="历史", question="谁是达芬奇?"))
print(response)

7.可视化训练过程
使用 SwanLab 记录训练过程并可视化。

from swanlab.integration.huggingface import SwanLabCallback

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_dataset,
    tokenizer=tokenizer,
    callbacks=[SwanLabCallback()],
)
trainer.train()

总结
通过上述步骤,你可以使用一个大语言模型对另一个大语言模型进行微调,使其更好地适应特定的任务或领域。微调的关键在于数据准备、模型选择、量化配置、LoRA 应用以及训练参数的设置。此外,LangChain 框架可以进一步优化模型的输出,提升其在实际应用中的表现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大霸王龙

+V来点难题

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值