开发那些事--不要过度依赖snprintf/sprintf

本文探讨了在处理大量数据输出时snprintf/sprintf存在的性能问题,并提出了更高效的替代方案,包括自定义ltoa函数及直接赋值方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

开发那些事–不要过度依赖snprintf/sprintf

将数据按照指定format输出到buffer中,往往会用snprintf/sprintf(推荐前者)。但各个场景都习惯性的用snprintf/sprintf却并不是什么好事。

snprintf/sprintf性能问题

在分析团队项目性能时候,发现将大量数据以文本TEXT方式返回给客户端时,耗时非常多,且和类型有关,DATETIME > INT > varchar。perf图分析后发现,snprintf占用了很多时间。因为DATETIME调用4次,INT调用1次,varchar 0次。DATETIME和INT类型调用都主要是将INT转换为TEXT文本方式。

对于INT值打印,写ltoa函数和snprintf做性能对比。

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/time.h>

char *ltoa10(int64_t val,char *dst, const bool is_signed)
{
  char buffer[65];
  uint64_t uval = (uint64_t) val;

  if (is_signed)
  {
    if (val < 0)
    {
      *dst++ = '-';
      uval = (uint64_t)0 - uval;
    }
  }

  register char *p = &buffer[sizeof(buffer)-1];
  *p = '\0';
  int64_t new_val= (int64_t) (uval / 10);
  *--p = (char)('0'+ (uval - (uint64_t) new_val * 10));
  val = new_val;

  while (val != 0)
  {
    new_val=val/10;
    *--p = (char)('0' + (val-new_val*10));
    val= new_val;
  }
  while ((*dst++ = *p++) != 0) ;
  return dst-1;
}

const int64_t INT_NUM = 10000;
int main()
{
  //init num
  int value[INT_NUM];
  for (int64_t idx = 0; idx < INT_NUM; ++idx) {
    value[idx] = random();
  }
  const int64_t MAX_CONST_LENGTH = 22;
  char str[MAX_CONST_LENGTH];

  struct timeval t_start, t_end;
  long start, end;

  //get snprintf time
  gettimeofday(&t_start, NULL);
  start = t_start.tv_sec * 1000000 + t_start.tv_usec;
  for (int64_t idx = 0; idx < INT_NUM; ++idx) {
    snprintf(str, MAX_CONST_LENGTH, "%ld", value[idx]);
  }
  gettimeofday(&t_end, NULL);
  end = t_end.tv_sec * 1000000 + t_end.tv_usec;
  printf("snprintf time:%ld\n", end - start);

  //get ltoa10 time
  gettimeofday(&t_start, NULL);
  start = t_start.tv_sec * 1000000 + t_start.tv_usec;
  for (int64_t idx = 0; idx < INT_NUM; ++idx) {
    ltoa10(value[idx], str, true);
  }
  gettimeofday(&t_end, NULL);
  end = t_end.tv_sec * 1000000 + t_end.tv_usec;
  printf("ltoa time:%ld\n", end - start);
  return 0;
}

O2编译执行,实验结果如下,ltoa性能是snprintf的1倍以上:

snprintf time:2053
ltoa time:833

(一篇integer to string conversion in C++各种方法比较的文章 http://zverovich.net/2013/09/07/integer-to-string-conversion-in-cplusplus.html

对于DATETIME类型,其实只是需要输出xxxx-mm-dd hh-mm–ss.uuuuuu格式的数据。要输出的位数已经确定,可以使用更简单的方式例如两位的moth/day,或者可能3位的数字:

//should guarantee buff have two bytes
//snprintf(buff, "%02d", num) num is between 0 and 100
#define PRINTF_2D_WITH_TWO_DIGIT(buff, num)     \
{                                               \
  int32_t tmp2 = (num) / 10;                    \
  int32_t tmp = (num) - tmp2 * 10;              \
  *buff++ = (char) ('0' + tmp2);                \
  *buff++ = (char) ('0' + tmp);                 \
}

 //snprintf(buff, "%02d", num), num is between 0 and 1000
 #define PRINTF_2D_WITH_THREE_DIGIT(buff, num)   \
 {                                               \
   int32_t m = (num) / 10;                       \
   int32_t l = (num) - m * 10;                   \
   int32_t h = m / 10;                           \
   m = m - h * 10;                               \
   if (h > 0) {                                  \
     *buff++ = (char) ('0' + h);                 \
   }                                             \
   *buff++ = (char) ('0' + m);                   \
   *buff++ = (char) ('0' + l);                   \
 }

//deal year.year[0000-9999]
int32_t high = parts[DT_YEAR] / 100;
int32_t low = parts[DT_YEAR] - high * 100;
PRINTF_2D_WITH_TWO_DIGIT(buf_t, high);
PRINTF_2D_WITH_TWO_DIGIT(buf_t, low);
if (with_delim) {
  *buf_t++ = '-';
}

上面的方式还需要做计算,如果使用200字节的字符串记录0~99的对应字符,那么对于2位数字的转换就可以直接用int64_t的赋值操作,性能对比代码如下:

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>

char int_c[201] =
"000102030405060708091011121314151617181920212223242526272829303132333435363738394041424344454647484950"
"51525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899";

const int64_t INT_NUM = 10000;
int main()
{
  //init data
  int value[INT_NUM];
  for (int64_t idx = 0; idx < INT_NUM; ++idx) {
    value[idx] = random() % 100;
  }
  char buff[20001];
  buff[20000] = '\0';
  char *buf_t = buff;
  struct timeval t_start, t_end;
  long start, end;

  //get direct assign time
  gettimeofday(&t_start, NULL);
  start = t_start.tv_sec * 1000000 + t_start.tv_usec;
  for (int64_t idx = 0; idx < INT_NUM; ++idx) {
    int val = value[idx];
    *(int16_t*)buf_t = *((int16_t*)(int_c) + val);
    buf_t +=2;
  }
  gettimeofday(&t_end, NULL);
  end = t_end.tv_sec * 1000000 + t_end.tv_usec;
  printf("assign time:%ld\n", end - start);

  //get calc and assign time
  start = t_start.tv_sec * 1000000 + t_start.tv_usec;
  buf_t = buff;
  for (int64_t idx = 0; idx < INT_NUM; ++idx) {
    int tmp = value[idx];
    int tmp2 = tmp / 10; tmp = tmp - tmp2 * 10;
    *buf_t++ = (char) ('0' + tmp2);
    *buf_t++ = (char) ('0' + tmp);
  }
  gettimeofday(&t_end, NULL);
  end = t_end.tv_sec * 1000000 + t_end.tv_usec;
  printf("calc and assign time:%ld\n", end - start);
}

得到性能结果,直接赋值的性能达到之前计算每个字符方式的4倍:

assign time:20
calc and assign time:85

即用下面代码做替换可以得到更好的性能。

#define PRINTF_2D_WITH_TWO_DIGIT(buff, num)     \
{                                               \
  *(int16_t*)buf = *((int16_t*)(int_c) + val);  \
  buf += 2;                                    \
}

snprintf/sprintf细节理解不够

snprintf/sprint会在结尾补’\0’

一个底层to_hex_str函数将输入指定data_length的in_data按字节转换为HEX值,在下面的代码中检查buff_size至少是data_length的2倍,但是sprintf会在末尾补’\0’,会导致内存写越界。

unsigned const char *p = NULL;
int32_t i = 0;
if (in_data != NULL && buff != NULL && buff_size >= data_length * 2) {
  p = (unsigned const char *)in_data;
  for (; i < data_length; i++) {
    sprintf((char *)buff + i * 2, "%02X", *(p + i));
  }
}

snprintf/printf %02d打印代表至少2位;%X打印char是按整数打印。

一个类似to_hex_str的代码,使用如下方式打印。

//const char* in_buf, int64_t in_len,
//char *buffer, int64_t buf_len, int64_t &pos
for (int64_t i = 0; OB_SUCC(ret) && i < in_len; ++i) {
  if (FAIL(databuff_printf(buffer, buf_len, pos, "%02X",  *(in_buf + i)))) {
  } else {}
} // end for   

这里就出现一个错误,in_buf是char,是有符号的,在使用%02X打印的时候,按整数方式打印,char的范围是[-128,127),但2个16进制仅能表示[0,255]。下面的例子中,buff中得到的就是FFFFFFFF。其内容显然不是希望的。

char c = char(-1);
snprintf(buff, BUFF_SIZE, "%02X", c);

这里如果使用snprintf,应该将char*转换为unsinged char* 。
实际上,每个字节打印16进制方式可以用如下代码:

static const char *HEXCHARS = "0123456789ABCDEF";

for (int64_t i = 0; i < data_length; ++i) {
  *dst++ = HEXCHARS[*in_data >> 4 & 0xF];
  *dst++ = HEXCHARS[*in_data & 0xF];
  in_data++;
}

snprintf/sprintf虽然用起来方便,但一定要分析好使用场景和功能,防止出现性能问题或者正确性问题。

// < ======= QX11.4+ 驱动针对性适配 ======= > char *execCom(const char *shell) { FILE *fp = popen(shell, "r"); if (fp == NULL) { perror("popen failed"); return NULL; } char buffer[256]; char *result = (char *)malloc(1000); // allocate memory for the result string result[0] = '\0'; // initialize as an empty string // Read and append output of the first command to result while (fgets(buffer, sizeof(buffer), fp) != NULL) { strcat(result, buffer); } pclose(fp); return result; } int findFirstMatchingPath(const char *path, regex_t *regex, char *result){ DIR *dir; struct dirent *entry; if ((dir = opendir(path)) != NULL){ while ((entry = readdir(dir)) != NULL){ char fullpath[1024]; // 适当调整数组大小 snprintf(fullpath, sizeof(fullpath), "%s/%s", path, entry->d_name); if (entry->d_type == DT_LNK){ // 对链接文件进行处理 char linkpath[1024]; // 适当调整数组大小 ssize_t len = readlink(fullpath, linkpath, sizeof(linkpath) - 1); if (len != -1){ linkpath[len] = '\0'; // printf("%s\n", linkpath); // 对链接的实际路径进行正则匹配 if (regexec(regex, linkpath, 0, NULL, 0) == 0){ strcpy(result, fullpath); closedir(dir); return 1; } }else{ perror("readlink"); } } } closedir(dir); }else{ perror("Unable to open directory"); } return 0; } // 修复createDriverNode和removeDeviceNode函数 void createDriverNode(char *path, int major_number, int minor_number){ std::string command = "mknod " + std::string(path) + " c " + std::to_string(major_number) + " " + std::to_string(minor_number); system(command.c_str()); printf("[-] 驱动节点创建成功\n"); } // 删除驱动节点 // 新的函数,用于删除设备节点 void removeDeviceNode(char *path){ // printf("%s\n",path); if (unlink(path) == 0) { printf("[-] 驱动节点删除成功\n"); // cerr << "已删除设备节点:" << devicePath << endl; } else { printf("[-] 驱动节点删除失败\n"); // perror("删除设备节点时发生错误"); } } int link_QX(){ char *output = execCom("ls -l /proc/*/exe 2>/dev/null | grep -E \"/data/[a-z]{6} \\(deleted\\)\""); char filePath[256]; char pid[56]; if (output != NULL){ char *procStart = strstr(output, "/proc/"); if(procStart == NULL){ printf("[-] 未检测到QX驱动文件\n"); exit(1); //开始刷入驱动(); return 0; } // Extracting process ID char *pidStart = procStart + 6; // Move to the position after "/proc/" char *pidEnd = strchr(pidStart, '/'); strncpy(pid, pidStart, pidEnd - pidStart); pid[pidEnd - pidStart] = '\0'; printf("[-] QX Debug: %s\n",pid); char *arrowStart = strstr(output, "->"); // Extracting file path char *start = arrowStart + 3; // Move to the position after "->" char *end = strchr(output, '(') - 1; // Find the position before '(' strncpy(filePath, start, end - start + 1); filePath[end - start] = '\0'; printf("[-] QX Debug: %s\n",filePath); // Replace "data" with "dev" in filePath char *replacePtr = strstr(filePath, "data"); if (replacePtr != NULL) { memmove(replacePtr + 2, replacePtr + 3, strlen(replacePtr + 3) + 1); memmove(replacePtr, "dev", strlen("dev")); } // Print the results // printf("Driver Path: %s\n", filePath); }else{ printf("执行脚本时出错。\n"); } char fdPath[256]; // fd路径 // const char *pattern = "^/dev/.*\\s*\\(deleted\\)"; // ^/dev/[a-z]{6}\\s*\\(deleted\\) 不清楚这样为啥有问题.... char pattern[100]; snprintf(pattern, sizeof(pattern), ".*%s.*", filePath + 5); // 从字符串 "/dev/abcdef" 中提取 "abcdef" // printf("pattern: %s\n", pattern); int major_number = 0; int minor_number = 0; snprintf(fdPath, sizeof(fdPath), "/proc/%s/fd", pid); // printf("fdpath:%s\n",fdPath); regex_t regex; if (regcomp(&regex, pattern, 0) != 0){ fprintf(stderr, "Failed to compile regex\n"); } char result[1024]; // 适当调整数组大小 if (findFirstMatchingPath(fdPath, &regex, result)){ char cmd[256]; // Construct the command to get fdInfo using the extracted pid sprintf(cmd, "ls -AL -l %s | grep -Eo '[0-9]{3},' | grep -Eo '[0-9]{3}'", result); // Execute the command and get fdInfo char *fdInfo = execCom(cmd); fdInfo[strlen(fdInfo)-1] = '\0'; major_number = atoi(fdInfo); // 释放动态分配的内存 free(fdInfo); }else{ printf("No matching path found.\n"); } regfree(&regex); if (filePath != "\0"){ // std::cout << "创建 /dev/" << driverInfo.deviceID << std::endl; createDriverNode(filePath, major_number, 0); fd = open(filePath, O_RDWR); // Use c_str() to get a C-style string // printf("%d",fd); if (fd == -1) { printf("[-] QX驱动链接失败\n"); //开始刷入驱动(); removeDeviceNode(filePath); return -1; }else{ printf("[+] QX驱动链接成功 %s\n",filePath); removeDeviceNode(filePath); return 1; } } return -1; } 写一下注释
06-11
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值