1:单链表的节点定义:
struct ListNode
{
int m_nValue;
ListNode *m_pNext;
};
2:向链表末尾中添加一个节点:
void AddToTail(ListNode** pHead, int value)
{
ListNode *pNew = new ListNode();
pNew->m_nValue = value;
pNew->m_pNext = NULL;
if(*pHead == NULL)
{
*pHead = pNew;
}
else
{
ListNode *pNode = *pHead;
while(pNode->m_pNext != NULL)
pNode = pNode->m_pNext;
pNode->m_pNext = pNew;
}
}
3:在链表中找到第一个含有某值的节点并删除该节点:
void RemoveNode()
{
if(pHead == NULL || *pHead == NULL)
return;
ListNode* pToBeDeleted = NULL;
if((*pHead)->m_nValue == value)
{
pToBeDeleted = *pHead;
*pHead = (*pHead)->m_pNext;
}
else
{
ListNode* pNode = *pNode;
while(pNode->m_pNext != NULL &&
pNode->m_pNext->m_nValue != value)
pNode = pNode->m_pNext;
if(pNode->m_pNext != NULL &&
pNode->m_pNext->m_nValue == value)
{
pToBeDeleted = pNode->m_pNext;
pNode->m_pNext = pNode->m_pNext->m_pNext;
}
}
if(pToBeDeleted != NULL)
{
delete pToBeDeleted;
pToBeDeleted = NULL;
}
}
4:从尾到头打印链表
// 链表的定义
struct ListNode
{
int m_nKey;
ListNode* m_pNext;
};
// 方法1 非递归方法
void PrintListReversingly(ListNode* pHead)
{
stack<ListNode*> nodes;
ListNode* pNode = pHead;
while(pNode != NULL)
{
nodes.push(pNode);
pNode = pNode->m_pNext;
}
while(!nodes.empty())
{
pNode = nodes.top();
printf("%d\t", pNode->m_nValue);
nodes.pop();
}
}
// 方法三 递归版
void PrintListReversingly(ListNode* pHead)
{
if(pHead != NULL)
{
if(pHead->m_pNext != NULL)
{
PrintListReversingly(pHead->m_pNext);
}
printf("%d\t", pHead->m_nValue);
}
}
/*
递归的弊端: 当链表非常长的时候,就会导致函数调用层次很深,
从而有可能导致函数调用栈溢出;
*/
5:在O(1)时间删除链表节点
struct ListNode
{
int m_nValue;
ListNode* m_pNext;
};
void DeleteNode(ListNode** pListHead, ListNode* pToBeDeleted)
{
if(!pListHead || !pToBeDeleted)
return;
// 要删除的结点不是尾结点
if(pToBeDeleted->m_pNext != NULL)
{
ListNode* pNext = pToBeDeleted->m_pNext;
pToBeDeleted->m_nValue = pNext->m_nValue;
pToBeDeleted->m_pNext = pNext->m_pNext;
delete pNext;
pNext = NULL;
}
// 链表只有一个结点,删除头结点(也是尾结点)
else if(*pListHead == pToBeDeleted)
{
delete pToBeDeleted;
pToBeDeleted = NULL;
*pListHead = NULL;
}
// 链表中有多个结点,删除尾结点
else
{
ListNode* pNode = *pListHead;
while(pNode->m_pNext != pToBeDeleted)
{
pNode = pNode->m_pNext;
}
pNode->m_pNext = NULL;
delete pToBeDeleted;
pToBeDeleted = NULL;
}
}
6:链表中倒数第K个结点
struct ListNode
{
int m_nValue;
ListNode* m_pNext;
};
ListNode* FindKthToTail(ListNode* pListHead, unsigned int k)
{
if(pListHead == NULL || k == 0)
return NULL;
ListNode *pAhead = pListHead;
ListNode *pBehind = NULL;
for(unsigned int i = 0; i < k - 1; ++ i)
{
if(pAhead->m_pNext != NULL)
pAhead = pAhead->m_pNext;
else
{
return NULL;
}
}
pBehind = pListHead;
while(pAhead->m_pNext != NULL)
{
pAhead = pAhead->m_pNext;
pBehind = pBehind->m_pNext;
}
return pBehind;
}
7:反转链表
struct ListNode
{
int m_nValue;
ListNode* m_pNext;
};
ListNode* ReverseList(ListNode* pHead)
{
ListNode* pReversedHead = NULL;
ListNode* pNode = pHead;
ListNode* pPrev = NULL;
while(pNode != NULL)
{
ListNode* pNext = pNode->m_pNext;
if(pNext == NULL)
pReversedHead = pNode;
pNode->m_pNext = pPrev;
pPrev = pNode;
pNode = pNext;
}
return pReversedHead;
}
8:合并两个排序的链表
struct ListNode
{
int m_nValue;
ListNode* m_pNext;
};
ListNode* Merge(ListNode* pHead1, ListNode* pHead2)
{
if(pHead1 == NULL)
return pHead2;
else if(pHead2 == NULL)
return pHead1;
ListNode* pMergedHead = NULL;
if(pHead1->m_nValue < pHead2->m_nValue)
{
pMergedHead = pHead1;
pMergedHead->m_pNext = Merge(pHead1->m_pNext, pHead2);
}
else
{
pMergedHead = pHead2;
pMergedHead->m_pNext = Merge(pHead1, pHead2->m_pNext);
}
return pMergedHead;
}
9:求单链表中结点的个数
// 求单链表中结点的个数
unsigned int GetListLength(ListNode * pHead)
{
if(pHead == NULL)
return 0;
unsigned int nLength = 0;
ListNode * pCurrent = pHead;
while(pCurrent != NULL)
{
nLength++;
pCurrent = pCurrent->m_pNext;
}
return nLength;
}
10:查找单链表的中间结点
也是设置两个指针,只不过这里是,两个指针同时向前走,前面的指针每次走两步,后面的指针每次走一步,前面的指针走到最后一个结点时,后面的指针所指结点就是中间结点,即第(n/2+1)个结点。注意链表为空,链表结点个数为1和2的情况。时间复杂度O(n)。
// 获取单链表中间结点,若链表长度为n(n>0),则返回第n/2+1个结点
ListNode * GetMiddleNode(ListNode * pHead)
{
// 链表为空或只有一个结点,返回头指针
if(pHead == NULL || pHead->m_pNext == NULL)
return pHead;
ListNode * pAhead = pHead;
ListNode * pBehind = pHead;
// 前面指针每次走两步,直到指向最后一个结点,后面指针每次走一步
while(pAhead->m_pNext != NULL)
{
pAhead = pAhead->m_pNext;
pBehind = pBehind->m_pNext;
if(pAhead->m_pNext != NULL)
pAhead = pAhead->m_pNext;
}
return pBehind; // 后面的指针所指结点即为中间结点
}
11:判断一个单链表是否有环
bool HasCircle(ListNode * pHead)
{
ListNode * pFast = pHead; // 快指针每次前进两步
ListNode * pSlow = pHead; // 慢指针每次前进一步
while(pFast != NULL && pFast->m_pNext != NULL)
{
pFast = pFast->m_pNext->m_pNext;
pSlow = pSlow->m_pNext;
if(pSlow == pFast) // 相遇,存在环
return true;
}
return false;
}
12: 判断两个单链表是否相交
方法:如果两个链表相交于某一节点,那么在这个相交节点之后的所有节点都是两个链表所共有的。也就是说,如果两个链表相交,那么最后一个节点肯定是共有的。先遍历第一个链表,记住最后一个节点,然后遍历第二个链表,到最后一个节点时和第一个链表的最后一个节点做比较,如果相同,则相交,否则不相交。时间复杂度为O(len1+len2),因为只需要一个额外指针保存最后一个节点地址,空间复杂度为O(1)。
bool IsIntersected(ListNode * pHead1, ListNode * pHead2)
{
if(pHead1 == NULL || pHead2 == NULL)
return false;
ListNode * pTail1 = pHead1;
while(pTail1->m_pNext != NULL)
pTail1 = pTail1->m_pNext;
ListNode * pTail2 = pHead2;
while(pTail2->m_pNext != NULL)
pTail2 = pTail2->m_pNext;
return pTail1 == pTail2;
}
13:求两个单链表相交的第一个节点
对第一个链表遍历,计算长度len1,同时保存最后一个节点的地址。
对第二个链表遍历,计算长度len2,同时检查最后一个节点是否和第一个链表的最后一个节点相同,若不相同,不相交,结束。
两个链表均从头节点开始,假设len1大于len2,那么将第一个链表先遍历len1-len2个节点,此时两个链表当前节点到第一个相交节点的距离就相等了,然后一起向后遍历,知道两个节点的地址相同。
时间复杂度,O(len1+len2)。参考代码如下:
ListNode* GetFirstCommonNode(ListNode * pHead1, ListNode * pHead2)
{
if(pHead1 == NULL || pHead2 == NULL)
return NULL;
int len1 = 1;
ListNode * pTail1 = pHead1;
while(pTail1->m_pNext != NULL)
{
pTail1 = pTail1->m_pNext;
len1++;
}
int len2 = 1;
ListNode * pTail2 = pHead2;
while(pTail2->m_pNext != NULL)
{
pTail2 = pTail2->m_pNext;
len2++;
}
if(pTail1 != pTail2) // 不相交直接返回NULL
return NULL;
ListNode * pNode1 = pHead1;
ListNode * pNode2 = pHead2;
// 先对齐两个链表的当前结点,使之到尾节点的距离相等
if(len1 > len2)
{
int k = len1 - len2;
while(k--)
pNode1 = pNode1->m_pNext;
}
else
{
int k = len2 - len1;
while(k--)
pNode2 = pNode2->m_pNext;
}
while(pNode1 != pNode2)
{
pNode1 = pNode1->m_pNext;
pNode2 = pNode2->m_pNext;
}
return pNode1;
}
14:已知一个单链表中存在环,求进入环中的第一个节点
首先判断是否存在环,若不存在结束。在环中的一个节点处断开(当然函数结束时不能破坏原链表),这样就形成了两个相交的单链表,求进入环中的第一个节点也就转换成了求两个单链表相交的第一个节点。参考代码如下:
ListNode* GetFirstNodeInCircle(ListNode * pHead)
{
if(pHead == NULL || pHead->m_pNext == NULL)
return NULL;
ListNode * pFast = pHead;
ListNode * pSlow = pHead;
while(pFast != NULL && pFast->m_pNext != NULL)
{
pSlow = pSlow->m_pNext;
pFast = pFast->m_pNext->m_pNext;
if(pSlow == pFast)
break;
}
if(pFast == NULL || pFast->m_pNext == NULL)
return NULL;
// 将环中的此节点作为假设的尾节点,将它变成两个单链表相交问题
ListNode * pAssumedTail = pSlow;
ListNode * pHead1 = pHead;
ListNode * pHead2 = pAssumedTail->m_pNext;
ListNode * pNode1, * pNode2;
int len1 = 1;
ListNode * pNode1 = pHead1;
while(pNode1 != pAssumedTail)
{
pNode1 = pNode1->m_pNext;
len1++;
}
int len2 = 1;
ListNode * pNode2 = pHead2;
while(pNode2 != pAssumedTail)
{
pNode2 = pNode2->m_pNext;
len2++;
}
pNode1 = pHead1;
pNode2 = pHead2;
// 先对齐两个链表的当前结点,使之到尾节点的距离相等
if(len1 > len2)
{
int k = len1 - len2;
while(k--)
pNode1 = pNode1->m_pNext;
}
else
{
int k = len2 - len1;
while(k--)
pNode2 = pNode2->m_pNext;
}
while(pNode1 != pNode2)
{
pNode1 = pNode1->m_pNext;
pNode2 = pNode2->m_pNext;
}
return pNode1;
}
参考资料:
剑指offer
http://blog.youkuaiyun.com/luckyxiaoqiang/article/details/7393134