HDU 1196 Lowest Bit

本文介绍了一种算法,用于找出一个正整数(范围1到100)二进制表示中最低位非零位的值,并通过几个示例详细解释了算法的实现方式。
Problem Description
Given an positive integer A (1 <= A <= 100), output the lowest bit of A.

For example, given A = 26, we can write A in binary form as 11010, so the lowest bit of A is 10, so the output should be 2.

Another example goes like this: given A = 88, we can write A in binary form as 1011000, so the lowest bit of A is 1000, so the output should be 8.
 
Input
Each line of input contains only an integer A (1 <= A <= 100). A line containing "0" indicates the end of input, and this line is not a part of the input data.
 
Output
For each A in the input, output a line containing only its lowest bit.
 
Sample Input
26 88 0
 
Sample Output
2 8
#include<iostream>
using namespace std;
int n;
int l(int x)
{
	return x&(-x);
}
int main()
{
	while(scanf("%d",&n)!=EOF&&n)
	{
		printf("%d\n",l(n));
	}
	return 0;
}
就是求第一个不为0的数位,有多少0就是2的多少次方。
#include <iostream>
using namespace std;
int main()
{
    int A,Ans;
    while(cin>>A)
    {
        if(A==0)break;
        Ans = 1;
        while(A%2==0)
        {
            A /= 2;
            Ans *= 2;
        }
        cout<<Ans<<endl;
    }
    return 0;
}
转的一个模拟
#include <stdio.h>  
#include <string.h>  
int set(int n)  
{  
    char str[10000];  
    int k = 0;  
    while(n)  
    {  
        int r = n%2;  
        str[k++] = r+'0';  
        n/=2;  
    }  
    str[k] = '\0';  
    int i;  
    for(i = 0;i<k;i++)  
    {  
        if(str[i]=='1')  
        break;  
    }  
    return i;  
}  
  
int pow(int n)  
{  
    int s = 1;  
    for(int i = 1;i<=n;i++)  
    s*=2;  
    return s;  
}  
int main()  
{  
    int n,k;  
    while(~scanf("%d",&n),n)  
    {  
        k = set(n);  
        k = pow(k);  
        printf("%d\n",k);  
    }  
  
    return 0;  
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值