Codeforces Gym 100339I Sum vs Product 剪枝搜索

博客介绍了如何使用剪枝搜索解决Codeforces Gym 100339I问题,该问题要求找到所有元素和与积相等的正整数集合,元素数量不超过500且允许重复。通过剪枝策略,能有效减少搜索空间,提高算法效率。

题目大意:

就是给出 n <= 500

然后构造有重复元素的集合, 问其中一共有n个元素且所有元素和和积相同的集合有几个

使用的元素必须是正整数


大致思路:

其实就是一个剪枝的搜索

可以考虑到这样的集合数量肯定是不多的, 于是剪枝搜索即可

平常搜索写的比较少....还是写了一下题解...


代码如下:

Result  :  Accepted     Memory  :  184 KB     Time  :  60 ms

/*
 * Author: Gatevin
 * Created Time:  2015/9/2 15:04:39
 * File Name: fz.cpp
 */
#include<iostream>
#include<sstream>
#include<fstream>
#include<vector>
#include<list>
#include<deque>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<bitset>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cctype>
#include<cmath>
#include<ctime>
#include<iomanip>
using namespace std;
const double eps(1e-8);
typedef long long lint;

int n;
int ans;

void dfs(int now, int sum , int pro, int num)
{
    if(sum < pro && num > 1) return;
    if(now == 0)
    {
        ans += (sum == pro);
        return;
    }
    if(num == 1)
    {
        dfs(now - 1, sum + 1, pro, 1);
        for(int k = num + 1; sum + k >= pro*k && k <= 500; k++)
            dfs(now - 1, sum + k, pro*k, k);
    }
    else
    {
        for(int k = num; sum + k >= pro*k && k <= 500; k++)
            dfs(now - 1, sum + k, pro*k, k);
    }
}

int main()
{
    freopen("sump.in", "r", stdin);
    freopen("sump.out", "w", stdout);
    ans = 0;
    scanf("%d", &n);
    dfs(n, 0, 1, 1);
    printf("%d\n", ans);
    return 0;
}



Codeforces Gym 101630 是一场编程竞赛,通常包含多个算法挑战问题。这些问题往往涉及数据结构、算法设计、数学建模等多个方面,旨在测试参赛者的编程能力和解决问题的能力。 以下是一些可能出现在 Codeforces Gym 101630 中的题目类型及解决方案概述: ### 题目类型 1. **动态规划(DP)** 动态规划是编程竞赛中常见的题型之一。问题通常要求找到某种最优解,例如最小路径和、最长递增子序列等。解决这类问题的关键在于状态定义和转移方程的设计[^1]。 2. **图论** 图论问题包括最短路径、最小生成树、网络流等。例如,Dijkstra 算法用于求解单源最短路径问题,而 Kruskal 或 Prim 算法则常用于最小生成树问题[^1]。 3. **字符串处理** 字符串问题可能涉及模式匹配、后缀数组、自动机等高级技巧。KMP 算法和 Trie 树是解决此类问题的常用工具[^1]。 4. **数论与组合数学** 这类问题通常需要对质数、模运算、排列组合等有深入的理解。例如,快速幂算法可以用来高效计算大数的模幂运算[^1]。 5. **几何** 几何问题可能涉及点、线、多边形的计算,如判断点是否在多边形内部、计算两个圆的交点等。向量运算和坐标变换是解决几何问题的基础[^1]。 ### 解决方案示例 #### 示例问题:动态规划 - 最长递增子序列 ```python def longest_increasing_subsequence(nums): if not nums: return 0 dp = [1] * len(nums) for i in range(len(nums)): for j in range(i): if nums[i] > nums[j]: dp[i] = max(dp[i], dp[j] + 1) return max(dp) # 示例输入 nums = [10, 9, 2, 5, 3, 7, 101, 18] print(longest_increasing_subsequence(nums)) # 输出: 4 ``` #### 示例问题:图论 - Dijkstra 算法 ```python import heapq def dijkstra(graph, start): distances = {node: float('infinity') for node in graph} distances[start] = 0 priority_queue = [(0, start)] while priority_queue: current_distance, current_node = heapq.heappop(priority_queue) if current_distance > distances[current_node]: continue for neighbor, weight in graph[current_node].items(): distance = current_distance + weight if distance < distances[neighbor]: distances[neighbor] = distance heapq.heappush(priority_queue, (distance, neighbor)) return distances # 示例输入 graph = { 'A': {'B': 1, 'C': 4}, 'B': {'A': 1, 'C': 2, 'D': 5}, 'C': {'A': 4, 'B': 2, 'D': 1}, 'D': {'B': 5, 'C': 1} } start = 'A' print(dijkstra(graph, start)) # 输出: {'A': 0, 'B': 1, 'C': 3, 'D': 4} ``` #### 示例问题:字符串处理 - KMP 算法 ```python def kmp_failure_function(pattern): m = len(pattern) lps = [0] * m length = 0 # length of the previous longest prefix suffix i = 1 while i < m: if pattern[i] == pattern[length]: length += 1 lps[i] = length i += 1 else: if length != 0: length = lps[length - 1] else: lps[i] = 0 i += 1 return lps def kmp_search(text, pattern): n = len(text) m = len(pattern) lps = kmp_failure_function(pattern) i = 0 # index for text j = 0 # index for pattern while i < n: if pattern[j] == text[i]: i += 1 j += 1 if j == m: print("Pattern found at index", i - j) j = lps[j - 1] elif i < n and pattern[j] != text[i]: if j != 0: j = lps[j - 1] else: i += 1 # 示例输入 text = "ABABDABACDABABCABAB" pattern = "ABABCABAB" kmp_search(text, pattern) # 输出: Pattern found at index 10 ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值