杭电1695 GCD(莫比乌斯反演)

本文介绍了一种解决特定GCD问题的有效算法。该算法利用线性筛法预处理莫比乌斯函数,并通过巧妙的数据结构优化,实现了快速查找在给定区间内具有特定最大公约数的整数对数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GCD

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6247    Accepted Submission(s): 2289


Problem Description
Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs.
Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same.

Yoiu can assume that a = c = 1 in all test cases.
 

Input
The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases.
Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above.
 

Output
For each test case, print the number of choices. Use the format in the example.
 

Sample Input
  
2 1 3 1 5 1 1 11014 1 14409 9
 

Sample Output
  
Case 1: 9 Case 2: 736427
Hint
For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5).
 

Source
2008 “Sunline Cup” National Invitational Contest 
/*
31ms比容斥原理快多了,,,之前用容斥做过,两天没白搞,,不过代码还是猥琐的看的bin神的代码。。。。。加油!!!
Time:2014-12-28 0:26
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAX=100000+10;
bool vis[MAX+10];
int mu[MAX+10],prime[MAX];
typedef long long LL;
void mobius(){//线性筛法求顺便mu
    mu[1]=1;int tot=0;
    memset(vis,0,sizeof(vis));
    for(int i=2;i<=MAX;i++){
        if(!vis[i]){
            prime[tot++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<tot;j++){
            if(i*prime[j]>MAX) break;
                vis[i*prime[j]]=true;
            if(i%prime[j]==0){
                mu[i*prime[j]]=0;
                break;
            }else{
                mu[i*prime[j]]=-mu[i];
            }
        }
    }
}
int main(){
    int T;
    mobius();//打表
    int a,b,c,d,k;
    int nCase=0;
    scanf("%d",&T);
    while(T--){
        nCase++;
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);//求1---b与1---d内最大公约数是k的个数,相当于求1---b/k与1---d/k之间互质的个数
        if(k==0){
            printf("Case %d: 0\n",nCase);
            continue;
        }
        b/=k;d/=k;
        if(b>d)swap(b,d);
        LL ans=0;
        for(int i=1;i<=b;i++)//1--b与1--d互质的个数
            ans+=(LL)mu[i]*(b/i)*(d/i);
        LL more=0;
        for(int i=1;i<=b;i++)//1--b与1--b互质的个数
            more+=(LL)mu[i]*(b/i)*(b/i);
        ans-=(more>>1);//题目要求5 7 和7 5是一组,刚好减去一半即可
        printf("Case %d: %lld\n",nCase,ans);
    }
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值