/*求最小生成树和最大生成树*/
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <cctype>
#include <map>
#include <set>
#include <bitset>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#include <cassert>
#include <limits>
#include <fstream>
using namespace std;
#define mem(A, X) memset(A, X, sizeof A)
#define pb(x) push_back(x)
#define mp(x,y) make_pair((x),(y))
#define vi vector<int>
#define all(x) x.begin(), x.end()
#define foreach(e,x) for(__typeof(x.begin()) e=x.begin();e!=x.end();++e)
#define sz(x) (int)((x).size())
#define sl(a) strlen(a)
#define rep(i,l,u) for(int (i)=(int)(l);(i)<(int)(u);++(i))
#define Rep(i,l,u) for(int (i)=(int)(l);(i)<=(int)(u);++(i))
#define min3(a,b,c) min(a,min(b,c))
#define max3(a,b,c) max(a,max(b,c))
#define dbg(a) cout << a << endl;
#define fi first
#define se second
typedef long long int64;
int gcd(const int64 &a, const int64 &b) { return b == 0 ? a : gcd(b, a % b); }
int64 int64pow(int64 a, int64 b){ if (b == 0) return 1; int64 t = int64pow(a, b / 2); if (b % 2) return t * t * a; return t * t; }
const int inf = 1 << 30;
const double eps = 1e-8;
const double pi = acos(-1.0);
const int MAX_N = 12005;
int T, cas = 0, n, u, v, we, Min_ans, Max_ans;
int fa_min[MAX_N], fa_max[MAX_N];
int pos;
struct edge {
int x, y, w;
edge(int x = 0, int y = 0, int w = 0) :x(x), y(y), w(w){}
};
edge e[MAX_N];
void make_min_set()
{
Rep(i, 0, n)
fa_min[i] = i;
}
bool min_cmp(const edge &s1, const edge &s2)
{
return s1.w < s2.w;
}
int Get_Min_Father(int x)
{
if (x == fa_min[x]) return x;
else
return fa_min[x] = Get_Min_Father(fa_min[x]);
}
void make_max_set()
{
Rep(i, 0, n)
fa_max[i] = i;
}
bool max_cmp(const edge &s1, const edge &s2)
{
return s1.w > s2.w;
}
int Get_Max_Father(int x)
{
if (x == fa_max[x]) return x;
else
return fa_max[x] = Get_Max_Father(fa_max[x]);
}
int Min_Kruskal()
{
Min_ans = 0;
make_min_set();
sort(e, e + pos, min_cmp);
int cnt = n;
rep(i, 0, pos) {
int t1 = Get_Min_Father(e[i].x);
int t2 = Get_Min_Father(e[i].y);
if (t1 != t2) {
fa_min[t1] = t2;
Min_ans += e[i].w;
if (cnt == 1)
break;
}
}
return Min_ans;
}
int Max_Kruskal()
{
Max_ans = 0;
make_max_set();
sort(e, e + pos, max_cmp);
int cnt = n;
rep(i, 0, pos) {
int t1 = Get_Max_Father(e[i].x);
int t2 = Get_Max_Father(e[i].y);
if (t1 != t2) {
fa_max[t1] = t2;
Max_ans += e[i].w;
if (cnt == 1)
break;
}
}
return Max_ans;
}
void solve()
{
pos = 0;
while (scanf("%d%d%d", &u, &v, &we) && (u || v || we)) {
e[pos].x = u; e[pos].y = v; e[pos].w = we;
++pos;
}
Min_ans = Min_Kruskal();
Max_ans = Max_Kruskal();
cout << "Case " << ++cas << ": ";
if ((Min_ans + Max_ans) % 2 == 0)
cout << (Min_ans + Max_ans) / 2 << endl;
else
cout << Min_ans + Max_ans << "/2" << endl;
}
int main()
{
cin >> T;
while (cin >> n) {
solve();
}
return 0;
}