验证GPU是否安装成功时候,如果copyfile有问题删除copyfile

博客内容提及要删除vl_compilenn中的copyfile,这可能涉及到代码的修改与调整,在信息技术领域,此类操作可能会影响相关程序的功能和性能。

删除vl_compilenn中的copyfile

import os import cv2 import subprocess import shutil import tempfile from PIL import Image from tqdm import tqdm import numpy as np import queue import threading import onnxruntime as ort import platform import re import sys # 设置ONNX Runtime日志级别为警告(减少输出) os.environ['ORT_LOG_LEVEL'] = '3' os.environ["CUDA_VISIBLE_DEVICES"] = "0" def get_cuda_version(): """获取安装的CUDA版本""" try: # 检查环境变量 cuda_path = os.environ.get('CUDA_PATH') if cuda_path: version_file = os.path.join(cuda_path, "version.txt") if os.path.exists(version_file): with open(version_file, 'r') as f: return f.read().strip() # 检查系统路径中的dll if platform.system() == "Windows": # 检查常见的CUDA安装路径 possible_paths = [ os.environ.get('CUDA_PATH', ''), r'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA', r'C:\CUDA' ] for base_path in possible_paths: if os.path.exists(base_path): for version_dir in os.listdir(base_path): if re.match(r'v\d+\.\d+', version_dir): version_file = os.path.join(base_path, version_dir, "version.txt") if os.path.exists(version_file): with open(version_file, 'r') as f: return f.read().strip() # 检查PATH中的dll try: result = subprocess.run(['where', 'cudart64_*.dll'], capture_output=True, text=True) if result.returncode == 0: dll_path = result.stdout.splitlines()[0].strip() version_match = re.search(r'cudart64_(\d+)\.dll', dll_path) if version_match: version_num = version_match.group(1) return f"CUDA {version_num[0]}.{version_num[1:]}" except: pass return "无法确定CUDA版本(请检查CUDA_PATH环境变量)" except Exception as e: return f"获取CUDA版本时出错: {str(e)}" def get_cudnn_version(): """获取安装的cuDNN版本""" try: cuda_path = os.environ.get('CUDA_PATH') if not cuda_path: return "未找到CUDA_PATH环境变量" # 检查头文件 header_path = os.path.join(cuda_path, "include", "cudnn_version.h") if not os.path.exists(header_path): header_path = os.path.join(cuda_path, "include", "cudnn.h") if os.path.exists(header_path): with open(header_path, 'r') as f: content = f.read() major = re.search(r"#define CUDNN_MAJOR\s+(\d+)", content) minor = re.search(r"#define CUDNN_MINOR\s+(\d+)", content) patch = re.search(r"#define CUDNN_PATCHLEVEL\s+(\d+)", content) if major and minor and patch: return f"cuDNN {major.group(1)}.{minor.group(1)}.{patch.group(1)}" # 检查库文件 lib_dir = os.path.join(cuda_path, "lib", "x64") if os.path.exists(lib_dir): for file in os.listdir(lib_dir): if file.startswith("cudnn64_") and file.endswith(".dll"): version = re.search(r"cudnn64_(\d+)\.dll", file) if version: version_num = version.group(1) return f"cuDNN {version_num[0]}.{version_num[1:]}" return "无法确定cuDNN版本(请检查cudnn64_*.dll文件)" except Exception as e: return f"获取cuDNN版本时出错: {str(e)}" def check_onnxruntime_gpu(): """检查ONNX Runtime是否支持GPU""" try: # 检查可用提供程序 available_providers = ort.get_available_providers() gpu_supported = 'CUDAExecutionProvider' in available_providers # 如果支持GPU但初始化失败,尝试创建简单会话 if gpu_supported: try: # 创建简单的ONNX模型 import onnx from onnx import helper, TensorProto # 创建一个简单的模型 input_name = 'input' output_name = 'output' shape = [1, 3, 224, 224] node_def = helper.make_node( 'Identity', inputs=[input_name], outputs=[output_name] ) graph_def = helper.make_graph( [node_def], 'test-model', [helper.make_tensor_value_info(input_name, TensorProto.FLOAT, shape)], [helper.make_tensor_value_info(output_name, TensorProto.FLOAT, shape)] ) model_def = helper.make_model(graph_def, producer_name='onnx-example') # 创建临时模型文件 with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as temp_file: onnx.save(model_def, temp_file.name) session = ort.InferenceSession(temp_file.name, providers=['CUDAExecutionProvider']) return f"支持GPU: {gpu_supported}, 当前会话使用: {session.get_providers()}" except Exception as e: return f"支持GPU: {gpu_supported}, 但初始化失败: {str(e)}" return f"支持GPU: {gpu_supported}, 可用提供程序: {available_providers}" except Exception as e: return f"检查ONNX Runtime GPU支持时出错: {str(e)}" def has_ffmpeg(): """检查系统是否安装了ffmpeg""" try: subprocess.run(['ffmpeg', '-version'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) return True except (FileNotFoundError, subprocess.CalledProcessError): # 检查常见安装路径 if platform.system() == "Windows": possible_paths = [ r'C:\Program Files\ffmpeg\bin\ffmpeg.exe', r'C:\ffmpeg\bin\ffmpeg.exe', r'C:\Program Files (x86)\ffmpeg\bin\ffmpeg.exe' ] for path in possible_paths: if os.path.exists(path): return True return False def add_audio_to_video(video_path, original_video_path, output_path, fps): """ 使用ffmpeg为生成的视频添加原始音频 参数: video_path: 无声视频路径 original_video_path: 原始视频路径(包含音频) output_path: 最终输出路径 fps: 视频帧率 """ if not has_ffmpeg(): print("警告: ffmpeg未安装,无法添加音频。请安装ffmpeg以支持音频处理。") shutil.copyfile(video_path, output_path) return output_path # 使用临时文件避免覆盖问题 with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as temp_file: temp_path = temp_file.name try: # 检查原始视频是否有音频流 check_audio_cmd = [ 'ffprobe', '-v', 'error', '-select_streams', 'a', '-show_entries', 'stream=codec_type', '-of', 'default=noprint_wrappers=1:nokey=1', original_video_path ] result = subprocess.run(check_audio_cmd, capture_output=True, text=True) has_audio = 'audio' in result.stdout if not has_audio: print(f"警告: 原始视频 '{os.path.basename(original_video_path)}' 没有音频轨道") shutil.copyfile(video_path, output_path) return output_path # 尝试使用软件编码 cmd = [ 'ffmpeg', '-y', # 覆盖输出文件 '-r', str(fps), # 添加帧率 '-i', video_path, # 无声视频 '-i', original_video_path, # 原始视频(包含音频) '-c:v', 'libx264', # 使用H.264编码 '-preset', 'fast', # 编码速度预设 '-crf', '23', # 质量控制 '-pix_fmt', 'yuv420p', # 视频要求的像素格式 '-c:a', 'aac', # 音频编码 '-b:a', '128k', # 音频比特率 '-map', '0:v:0', # 选择第一个视频流 '-map', '1:a:0', # 选择第二个文件的音频流 '-shortest', # 以最短流结束 '-movflags', '+faststart', # 流媒体优化 temp_path ] # 执行命令 try: subprocess.run(cmd, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) except subprocess.CalledProcessError as e: print(f"音频合并失败: {e}") print("将使用无声视频") shutil.copyfile(video_path, output_path) return output_path # 移动临时文件到最终位置 shutil.move(temp_path, output_path) return output_path except Exception as e: print(f"音频合并过程中出错: {str(e)}") print("将使用无声视频") shutil.copyfile(video_path, output_path) return output_path finally: # 清理临时文件 if os.path.exists(temp_path): os.remove(temp_path) class Videocap: def __init__(self, video, model_name, limit=1280): self.model_name = model_name vid = cv2.VideoCapture(video) if not vid.isOpened(): raise ValueError(f"无法打开视频文件: {video}") width = int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)) self.total = int(vid.get(cv2.CAP_PROP_FRAME_COUNT)) self.fps = vid.get(cv2.CAP_PROP_FPS) self.ori_width, self.ori_height = width, height max_edge = max(width, height) scale_factor = limit / max_edge if max_edge > limit else 1. height = int(round(height * scale_factor)) width = int(round(width * scale_factor)) self.width, self.height = self.to_16s(width), self.to_16s(height) # 修改为16的倍数 self.count = 0 self.cap = vid self.ret, frame = self.cap.read() self.cap.set(cv2.CAP_PROP_POS_FRAMES, 0) self.q = queue.Queue(maxsize=100) t = threading.Thread(target=self._reader) t.daemon = True t.start() def _reader(self): while True: self.ret, frame = self.cap.read() if not self.ret: break frame = np.asarray(self.process_frame(frame, self.width, self.height)) self.q.put(frame) self.count += 1 self.cap.release() def read(self): if self.q.empty() and not self.ret: return None f = self.q.get() self.q.task_done() return f def to_16s(self, x): """确保分辨率是16的倍数(H.264兼容性要求)""" if x < 256: return 256 # 确保宽度和高度都能被16整除 return x - x % 16 def process_frame(self, img, width, height): img = Image.fromarray(img[:, :, ::-1]).resize((width, height), Image.Resampling.BILINEAR) img = np.array(img).astype(np.float32) / 127.5 - 1.0 return np.expand_dims(img, axis=0) class Cartoonizer(): def __init__(self, model_path, device="gpu"): self.model_path = model_path self.device = device self.name = os.path.basename(model_path).rsplit('.', 1)[0] # 打印环境信息 print("\n" + "="*50) print("环境检查:") print(f"CUDA 版本: {get_cuda_version()}") print(f"cuDNN 版本: {get_cudnn_version()}") print(f"ONNX Runtime GPU 支持: {check_onnxruntime_gpu()}") print("="*50 + "\n") # 配置提供程序 - 强制使用CPU providers = ['CPUExecutionProvider'] print("强制使用CPUExecutionProvider") # 创建ONNX会话 session_options = ort.SessionOptions() session_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL try: self.sess_land = ort.InferenceSession(model_path, sess_options=session_options, providers=providers) print(f"ONNX Runtime 使用的提供程序: {self.sess_land.get_providers()}") except Exception as e: print(f"创建ONNX会话失败: {str(e)}") print("尝试使用默认提供程序...") self.sess_land = ort.InferenceSession(model_path, sess_options=session_options) # 打印输入输出信息 print("模型输入信息:") for input in self.sess_land.get_inputs(): print(f" Name: {input.name}, Shape: {input.shape}, Type: {input.type}") print("模型输出信息:") for output in self.sess_land.get_outputs(): print(f" Name: {output.name}, Shape: {output.shape}, Type: {output.type}") def post_precess(self, img, wh): img = (img.squeeze() + 1.) / 2 * 255 img = img.clip(0, 255).astype(np.uint8) img = Image.fromarray(img).resize((wh[0], wh[1]), Image.Resampling.BILINEAR) img = np.array(img).astype(np.uint8) return img def process_video(self, video_path, output_path): """处理视频并添加原始音频""" # 创建临时无声视频文件 temp_dir = tempfile.mkdtemp() temp_video_path = os.path.join(temp_dir, "temp_no_audio.mp4") try: # 处理视频(无声) vid = Videocap(video_path, self.name) # 使用FFmpeg直接编码视频(更高效) if has_ffmpeg(): print("使用FFmpeg进行视频编码") return self.process_video_with_ffmpeg(vid, video_path, output_path, temp_video_path) # 回退到OpenCV编码 print("使用OpenCV进行视频编码") return self.process_video_with_opencv(vid, video_path, output_path, temp_video_path) except Exception as e: print(f"视频处理失败: {str(e)}") # 尝试直接复制原始视频作为回退 shutil.copyfile(video_path, output_path) print(f"已回退到原始视频: {output_path}") return output_path finally: # 清理临时文件 shutil.rmtree(temp_dir, ignore_errors=True) def process_video_with_ffmpeg(self, vid, original_video_path, output_path, temp_video_path): """使用FFmpeg处理视频""" try: # 创建FFmpeg管道 ffmpeg_cmd = [ 'ffmpeg', '-y', '-f', 'rawvideo', '-vcodec', 'rawvideo', '-s', f'{vid.width}x{vid.height}', '-pix_fmt', 'rgb24', '-r', str(vid.fps), '-i', '-', '-an', # 无音频 '-vcodec', 'libx264', '-preset', 'fast', '-crf', '23', '-pix_fmt', 'yuv420p', temp_video_path ] ffmpeg_process = subprocess.Popen( ffmpeg_cmd, stdin=subprocess.PIPE, stdout=subprocess.DEVNULL, stderr=subprocess.PIPE ) num = vid.total pbar = tqdm(total=vid.total) pbar.set_description(f"处理视频: {os.path.basename(original_video_path)}") try: while num > 0: frame = vid.read() if frame is None: print("警告: 读取到空帧,提前结束") break fake_img = self.sess_land.run(None, {self.sess_land.get_inputs()[0].name: frame})[0] result_img = self.post_precess(fake_img, (vid.width, vid.height)) # 转换为RGB格式并写入管道 rgb_img = cv2.cvtColor(result_img, cv2.COLOR_BGR2RGB) ffmpeg_process.stdin.write(rgb_img.tobytes()) pbar.update(1) num -= 1 except Exception as e: print(f"处理过程中出错: {str(e)}") finally: pbar.close() ffmpeg_process.stdin.close() _, stderr = ffmpeg_process.communicate() if ffmpeg_process.returncode != 0: print(f"FFmpeg编码错误: {stderr.decode('utf-8')}") raise RuntimeError("FFmpeg编码失败") # 添加原始音频 return add_audio_to_video(temp_video_path, original_video_path, output_path, vid.fps) except Exception as e: print(f"FFmpeg处理失败: {str(e)}") print("回退到OpenCV编码") return self.process_video_with_opencv(vid, original_video_path, output_path, temp_video_path) def process_video_with_opencv(self, vid, original_video_path, output_path, temp_video_path): """使用OpenCV处理视频(回退方法)""" # 尝试不同的编码器 codec_options = [ ('mp4v', 'MPEG-4'), # 最可靠的备选 ('avc1', 'H.264/AVC'), ('h264', 'H.264/AVC'), ('x264', 'H.264/AVC'), ('vp09', 'VP9'), ('vp80', 'VP8') ] video_out = None selected_codec = None for codec, codec_name in codec_options: try: fourcc = cv2.VideoWriter_fourcc(*codec) video_out = cv2.VideoWriter( temp_video_path, fourcc, vid.fps, (vid.ori_width, vid.ori_height) ) if video_out.isOpened(): selected_codec = (codec, codec_name) print(f"使用编码器: {codec_name} ({codec})") break else: video_out.release() except Exception as e: print(f"编码器 {codec} 初始化失败: {str(e)}") video_out = None # 如果所有编码器都失败,使用默认编码器 if video_out is None or not video_out.isOpened(): print("警告: 所有编码器初始化失败,使用默认MPEG-4编码器") fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_out = cv2.VideoWriter( temp_video_path, fourcc, vid.fps, (vid.ori_width, vid.ori_height) ) selected_codec = ('mp4v', 'MPEG-4 (默认)') num = vid.total pbar = tqdm(total=vid.total) pbar.set_description(f"处理视频: {os.path.basename(original_video_path)}") try: while num > 0: frame = vid.read() if frame is None: print("警告: 读取到空帧,提前结束") break fake_img = self.sess_land.run(None, {self.sess_land.get_inputs()[0].name: frame})[0] fake_img = self.post_precess(fake_img, (vid.ori_width, vid.ori_height)) video_out.write(fake_img[:, :, ::-1]) pbar.update(1) num -= 1 except Exception as e: print(f"处理过程中出错: {str(e)}") finally: pbar.close() video_out.release() # 添加原始音频 return add_audio_to_video(temp_video_path, original_video_path, output_path, vid.fps) def process_image(self, image_path, output_path): try: img = cv2.imread(image_path) if img is None: print(f"错误: 无法读取图片: {image_path}") return None ori_height, ori_width = img.shape[:2] # 计算目标尺寸 max_edge = max(ori_width, ori_height) scale_factor = 1280 / max_edge if max_edge > 1280 else 1. height = int(round(ori_height * scale_factor)) width = int(round(ori_width * scale_factor)) # 确保分辨率是16的倍数 width = width - width % 16 height = height - height % 16 # 预处理图片 img_rgb = Image.fromarray(img[:, :, ::-1]).resize((width, height), Image.Resampling.BILINEAR) img_np = np.array(img_rgb).astype(np.float32) / 127.5 - 1.0 input_data = np.expand_dims(img_np, axis=0) # 运行模型 fake_img = self.sess_land.run(None, {self.sess_land.get_inputs()[0].name: input_data})[0] # 后处理 result_img = self.post_precess(fake_img, (ori_width, ori_height)) # 保存结果 cv2.imwrite(output_path, result_img[:, :, ::-1]) return output_path except Exception as e: print(f"图片处理失败: {str(e)}") # 尝试直接复制原始图片作为回退 shutil.copyfile(image_path, output_path) print(f"已回退到原始图片: {output_path}") return output_path def videopic_to_new(params): """ 将输入目录中的图片和视频转换为动漫风格 参数: params (dict): 包含以下键的字典: "video_dir": 输入目录路径 "model": ONNX模型文件路径 "output_dir": 输出目录路径 "device": (可选) 运行设备 ("cpu" 或 "gpu"),默认为 "gpu" """ # 从参数中提取值 input_dir = params["video_dir"] model_path = params["model"] output_dir = params["output_dir"] device = params.get("device", "gpu") # 确保输出目录存在 os.makedirs(output_dir, exist_ok=True) # 检查ffmpeg是否可用 if has_ffmpeg(): print("ffmpeg已安装,将自动为视频添加音频") else: print("警告: ffmpeg未安装,生成的视频将没有声音") # 初始化卡通化器 cartoonizer = Cartoonizer(model_path, device) model_name = os.path.basename(model_path).rsplit('.', 1)[0] # 支持的媒体格式 image_exts = ['.png', '.jpg', '.jpeg', '.bmp', '.tiff', '.webp'] video_exts = ['.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv'] # 处理所有文件 processed_files = [] for filename in os.listdir(input_dir): filepath = os.path.join(input_dir, filename) if not os.path.isfile(filepath): continue ext = os.path.splitext(filename)[1].lower() output_name = f"{os.path.splitext(filename)[0]}_{model_name}{ext}" output_path = os.path.join(output_dir, output_name) try: if ext in image_exts: print(f"\n处理图片: {filename}") result = cartoonizer.process_image(filepath, output_path) if result: processed_files.append(result) print(f"保存为: {output_name}") elif ext in video_exts: print(f"\n处理视频: {filename}") result = cartoonizer.process_video(filepath, output_path) if result: processed_files.append(result) print(f"保存为: {output_name}") except Exception as e: print(f"处理 {filename} 时出错: {str(e)}") print("\n处理完成。") print(f"共处理文件: {len(processed_files)}") return processed_files def check_video_format(path): """检查视频格式是否符合要求""" if not has_ffmpeg(): print("无法检查视频格式: ffmpeg未安装") return cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', 'stream=codec_name,pix_fmt', '-of', 'csv=p=0', path] try: result = subprocess.run(cmd, capture_output=True, text=True) return result.stdout.strip() except Exception as e: return f"检查失败: {str(e)}" if __name__ == "__main__": # 构建参数字典 params = { "video_dir": r"E:\软件视频类型测试\1带货测试\成品\切片法区测试", "model": r"E:\python成品\15视频转绘\AnimeGANv3-1.1.0\AnimeGANv3-1.1.0\deploy\AnimeGANv3_Hayao_36.onnx", "output_dir": r"E:\软件视频类型测试\1带货测试\成品\成品", "device": "cpu" # 强制使用CPU } try: # 执行转换 results = videopic_to_new(params) # 打印结果 print("\n处理后的文件:") for res in results: print(f" - {res}") # 检查视频格式 if res.lower().endswith(('.mp4', '.avi', '.mov', '.mkv', '.flv', '.wmv')): print(f" 视频格式: {check_video_format(res)}") except Exception as e: print(f"\n发生严重错误: {str(e)}") import traceback traceback.print_exc() 问题是我cuda是11.8为什么读出来是6.5
06-13
2025-08-18 23:38:51.077861 BMC ERROR: bmc_global_pub.c(1565): Failed to copy file : from /data/var/log/aimodule/aimodule.tar.gz to /dev/shm/dump_info_tmp/dump_info/AppDump/card_manage/aimodule.tar.gz, ret = -1 2025-08-18 23:38:51.079917 card_manage ERROR: card_manage_module.c(712): Dump PassThroughCard info failed. 2025-08-18 23:38:51.083120 card_manage ERROR: gpu_card.c(1276): PCIeGPU1Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.085204 card_manage ERROR: dal_file.c(361): dfl_call_class_method BMC.CopyFile. Ret is -1 2025-08-18 23:38:51.085511 card_manage ERROR: gpu_nvmodule_manage.c(1280): nvaimodule_collect_log_task: Copy file failed, ret = -1, errinfo(Success). 2025-08-18 23:38:51.088486 card_manage ERROR: gpu_card.c(1276): PCIeGPU1Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.091019 card_manage ERROR: gpu_card.c(1276): PCIeGPU1Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.093481 card_manage ERROR: gpu_card.c(1276): PCIeGPU1Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.097487 card_manage ERROR: gpu_card.c(1276): PCIeGPU2Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.099683 card_manage ERROR: gpu_card.c(1276): PCIeGPU2Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.102082 card_manage ERROR: gpu_card.c(1276): PCIeGPU2Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.103402 card_manage ERROR: gpu_card.c(1276): PCIeGPU2Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.104821 card_manage ERROR: gpu_card.c(1276): PCIeGPU3Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.106799 card_manage ERROR: gpu_card.c(1276): PCIeGPU3Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.108112 card_manage ERROR: gpu_card.c(1276): PCIeGPU3Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.109535 card_manage ERROR: gpu_card.c(1276): PCIeGPU3Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.111305 card_manage ERROR: gpu_card.c(1276): PCIeGPU4Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.112951 card_manage ERROR: gpu_card.c(1276): PCIeGPU4Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.114077 card_manage ERROR: gpu_card.c(1276): PCIeGPU4Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.115446 card_manage ERROR: gpu_card.c(1276): PCIeGPU4Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.116654 card_manage ERROR: gpu_card.c(1276): PCIeGPU5Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.120611 card_manage ERROR: gpu_card.c(1276): PCIeGPU5Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.121696 card_manage ERROR: gpu_card.c(1276): PCIeGPU5Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.122886 card_manage ERROR: gpu_card.c(1276): PCIeGPU5Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.124399 card_manage ERROR: gpu_card.c(1276): PCIeGPU6Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.126231 card_manage ERROR: gpu_card.c(1276): PCIeGPU6Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.127839 card_manage ERROR: gpu_card.c(1276): PCIeGPU6Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.128864 card_manage ERROR: gpu_card.c(1276): PCIeGPU6Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.130169 card_manage ERROR: gpu_card.c(1276): PCIeGPU7Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.131974 card_manage ERROR: gpu_card.c(1276): PCIeGPU7Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.133045 card_manage ERROR: gpu_card.c(1276): PCIeGPU7Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.134229 card_manage ERROR: gpu_card.c(1276): PCIeGPU7Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.135804 card_manage ERROR: gpu_card.c(1276): PCIeGPU8Card-42: Nvidia Get Capability0 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.136778 card_manage ERROR: gpu_card.c(1276): PCIeGPU8Card-42: Nvidia Get Capability1 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.139447 card_manage ERROR: gpu_card.c(1276): PCIeGPU8Card-42: Nvidia Get Capability2 failed:ERR_I2C_ACCESS(0x07) 2025-08-18 23:38:51.141571 card_manage ERROR: gpu_card.c(1276): PCIeGPU8Card-42: Nvidia Get Capability3 failed:ERR_I2C_ACCESS(0x07)
最新发布
08-19
<think>好的,我现在需要帮用户找到MATLAB QFTCT工具包的安装教程。用户之前提到了引用内容,其中引用[1]是关于nvcc编译错误,引用[2]和[3]涉及MATLAB神经网络工具箱和在线工具。不过用户现在问的是QFTCT工具包,可能需要先确认这个工具包的正确名称和来源。 首先,QFTCT可能是指Quantitative Feedback Theory Control Toolbox,但不确定缩写是否正确。用户可能拼写有误,比如QFT Control Toolbox?需要确认正确的名称。然后,查找官方安装指南,通常MATLAB的工具箱安装步骤类似,但可能有特殊要求。 根据引用[1]中的错误信息,用户可能在安装其他工具箱时遇到了CUDA编译问题,但QFTCT可能不需要GPU支持,所以可能安装步骤较简单。引用[2]提到神经网络工具箱的安装,可能步骤类似,比如通过Add-Ons管理器或手动安装。引用[3]中的在线MATLAB可能不适用,因为QFTCT可能需要本地安装。 接下来,我需要整理安装步骤:首先检查MATLAB版本是否兼容,然后通过Add-On Explorer搜索QFTCT,如果找到就直接安装。如果不在Add-On库中,可能需要手动下载,解压到工具箱目录,并通过Set Path添加路径。另外,用户可能需要运行初始化脚本或检查依赖项。 还要考虑用户可能遇到的问题,例如路径设置错误或版本不兼容。建议用户提供具体错误信息以便进一步帮助。同时,引用之前的错误,但不确定是否相关,可能需要用户确认是否遇到类似问题。</think>关于MATLAB QFTCT(Quantitative Feedback Theory Control Toolbox)工具箱的安装,以下是分步骤说明: ### 一、安装前准备 1. 确认MATLAB版本兼容性 QFTCT通常要求MATLAB R2014b或更高版本[^2],建议使用R2018b及以上版本以获得最佳支持 2. 获取安装包 官方渠道:通过MATLAB Add-On Explorer直接搜索"QFTCT" 手动安装:从MathWorks File Exchange下载工具箱文件(需确认文件包含`qft`文件夹及`.mltbx`安装包) ### 二、正式安装步骤 #### 方法1:通过Add-On管理器自动安装 ```matlab 1. 打开MATLAB主页选项卡 → 点击"附加功能"按钮 2. 在搜索栏输入"QFTCT" 3. 找到工具箱后点击"安装" 4. 等待进度条完成(约1-3分钟) ``` > 此方法自动处理路径配置和环境变量 #### 方法2:手动安装(适用于离线包) ```matlab 1. 将下载的.zip文件解压至MATLAB工具箱目录: >> copyfile('qftct_toolbox','C:\Program Files\MATLAB\R2022a\toolbox\') 2. 添加工具箱路径: >> addpath(genpath('C:\Program Files\MATLAB\R2022a\toolbox\qftct_toolbox')) >> savepath 3. 验证安装: >> which qft >> qftdemo % 运行示例脚本 ``` ### 三、故障排查 若遇到类似引用[1]的编译错误,可能是由于: 1. 路径包含中文字符 → 确保安装路径全英文 2. 版本冲突 → 尝试在MATLAB命令窗口执行: ```matlab >> restoredefaultpath >> rehash toolboxcache ``` 3. 依赖缺失 → 确认已安装Control System Toolbox和Simulink 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值