枚举任意3点找其最小覆盖圆
当为钝角三角形时不是外接圆,而是以其最长边为直径的圆;
当为钝角三角形时不是外接圆,而是以其最长边为直径的圆;
当为外接圆时,半径公式为r=abc/4s;
由正弦定理,a/sinA=b/sinB=c/sinC=2R,
得sinA=a/(2R),
又三角形面积公式S=(bcsinA)/2,
所以S=(abc)/(4R),
故R=(abc)/(4S).
const double eps = 1e-8 ;
int cmp(double x){
if(fabs(x) < eps) return 0 ;
if(x < eps) return -1 ;
return 1 ;
}
struct point{
double x , y ;
point(){}
point(double _x , double _y):x(_x) , y(_y){}
friend point operator - (const point &a , const point &b){
return point(a.x-b.x , a.y-b.y) ;
}
friend double operator ^ (const point &a , const point &b){
return a.x * b.y - a.y * b.x ;
}
friend bool operator < (const point &a , const point &b){
if(cmp(a.x - b.x) != 0) return cmp(a.x - b.x) < 0 ;
else return cmp(a.y - b.y) < 0 ;
}
friend bool operator == (const point &a , const point &b){
return cmp(a.x - b.x) == 0 && cmp(a.y - b.y) == 0 ;
}
friend double dis (const point &a , const point &b){
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
};
vector<point> convex_hull(vector<point> &a){
vector<point> s(a.size() * 2 + 5) ;
sort(a.begin() , a.end()) ;
a.erase( unique(a.begin() , a.end()) , a.end()) ;
int m = 0 ;
for(int i = 0 ; i < a.size() ; i++){
while(m > 1 && cmp((s[m-1] - s[m-2]) ^ (a[i] - s[m-2])) <= 0) m-- ;
s[m++] = a[i] ;
}
int k = m ;
for(int i = a.size() - 2 ; i >= 0 ; i--){
while(m > k && cmp((s[m-1] - s[m-2]) ^ (a[i] - s[m-2])) <= 0) m-- ;
s[m++] = a[i] ;
}
s.resize(m) ;
if(a.size() > 1) s.resize(m-1) ;
return s ;
}
int main(){
int n , i , j , k ;
vector<point> g ;
while(cin>>n && n){
g.resize(n) ;
for(i = 0 ; i < n ; i++) scanf("%lf%lf" , &g[i].x , &g[i].y) ;
if(n == 1){
puts("0.50") ; continue ;
}
if(n == 2){
printf("%.2lf\n" , dis(g[0] , g[1]) * 0.5 + 0.5) ;
continue ;
}
vector<point> p = convex_hull(g) ;
double ans = 0 , r ;
for(i = 0 ; i < p.size() ; i++){
for(j = i+1 ; j < p.size() ; j++){
for(k = j+1 ; k < p.size() ; k++){
double a = dis(p[i] , p[j]) ;
double b = dis(p[i] , p[k]) ;
double c = dis(p[j] , p[k]) ;
double s = fabs( (p[i] - p[j]) ^ (p[k] - p[j]) ) * 0.5 ;
if(a*a+b*b < c*c || a*a+c*c < b*b || b*b+c*c < a*a)
r = max(a , max(b , c)) * 0.5 ;
else r = a*b*c / 4.0 / s ;
ans = max(ans , r) ;
}
}
}
printf("%.2lf\n" , ans + 0.5) ;
}
return 0 ;
}